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STABILITY DEFINITION

Change in geometry of a structure or structural component
under compression — resulting in loss of ability to resist loading
IS defined as instability in the book.

Instability can lead to catastrophic failure > must be accounted
In design. Instability is a strength-related limit state.

Why did we define instability instead of stability? Seem strange!

Stability is not easy to define.

= Every structure is in equilibrium — static or dynamic. If it is not in
equilibrium, the body will be in motion or a mechanism.

= A mechanism cannot resist loads and is of no use to the civil
engineer.

= Stability qualifies the state of equilibrium of a structure. Whether it
IS In stable or unstable equilibrium.



STABILITY DEFINITION

Structure is in stable equilibrium when small perturbations do
not cause large movements like a mechanism. Structure
vibrates about it equilibrium position.

Structure is in unstable equilibrium when small perturbations
produce large movements — and the structure never returns to
Its original equilibrium position.

Structure is in neutral equilibrium when we cant decide whether
It is in stable or unstable equilibrium. Small perturbation cause
large movements — but the structure can be brought back to its
original equilibrium position with no work.

Thus, stability talks about the equilibrium state of the structure.

The definition of stability had nothing to do with a change in the
geometry of the structure under compression — seems strange!



STABILITY DEFINITION
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BUCKLING Vs. STABILITY

Change in geometry of structure under compression — that
results in its ability to resist loads — called instability.

Not true — this is called buckling.

Buckling Is a phenomenon that can occur for structures under
compressive |loads.

= The structure deforms and is in stable equilibrium in state-1.

= As the load increases, the structure suddenly changes to
deformation state-2 at some critical load P.,.

= The structure buckles from state-1 to state-2, where state-2 is
orthogonal (has nothing to do, or independent) with state-1.

What has buckling to do with stability?
= The gquestion is - Is the equilibrium in state-2 stable or unstable?

= Usually, state-2 after buckling is either neutral or unstable
equilibrium
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BUCKLING Vs. STABILITY

= Thus, there are two topics we will be interested in this course
= Buckling — Sudden change in deformation from state-1 to state-2

= Stability of equilibrium — As the loads acting on the structure are
Increased, when does the equilibrium state become unstable?

= The equilibrium state becomes unstable due to:
« Large deformations of the structure
= Inelasticity of the structural materials

= We will look at both of these topics for
= Columns
= Beams
= Beam-Columns
= Structural Frames



TYPES OF INSTABILITY

Structure subjected to compressive forces can undergo:

1. Buckling — bifurcation of equilibrium from deformation state-1 to
state-2.

= Bifurcation buckling occurs for columns, beams, and symmetric
frames under gravity loads only

2. Fallure due to instability of equilibrium state-1 due to large
deformations or material inelasticity

= Elastic instability occurs for beam-columns, and frames subjected
to gravity and lateral loads.

= Inelastic instability can occur for all members and the frame.

=  We will study all of this in this course because we don’t want
our designed structure to buckle or fail by instability — both of
which are strength limit states.




TYPES OF INSTABILITY

BIFURCATION BUCKLING

= Member or structure subjected to loads. As the load is
Increased, it reaches a critical value where:

= The deformation changes suddenly from state-1 to state-2.
= And, the equilibrium load-deformation path bifurcates.

= Critical buckling load when the load-deformation path bifurcates
= Primary load-deformation path before buckling
= Secondary load-deformation path post buckling
= Is the post-buckling path stable or unstable?



SYMMETRIC BIFURCATION

= Post-buckling load-deform. paths are symmetric about load axis.

= If the load capacity increases after buckling then stable symmetric
bifurcation.

= If the load capacity decreases after buckling then unstable
symmetric bifurcation.

Load
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ASYMMETRIC BIFURCATION

= Post-buckling behavior that is asymmetric about load axis.

Load

Deflection

(c) ASYMMETRIC BIFURCATION
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INSTABILITY FAILURE

= There is no bifurcation of the load-deformation path. The
deformation stays in state-1 throughout

= The structure stiffness decreases as the loads are increased.
The change is stiffness is due to large deformations and / or
material inelasticity.

The structure stiffness decreases to zero and becomes negative.
The load capacity is reached when the stiffness becomes zero.

Neutral equilibrium when stiffness becomes zero and unstable
equilibrium when stiffness is negative.

Structural stability failure — when stiffness becomes negative.



INSTABILITY FAILURE

FAILURE OF BEAM-COLUMNS

K<0

No bifurcation.

Instability due to material
and geometric nonlinearity

S 4



i INSTABILITY FAILURE

= Snap-through buckling

%)\/\LLL% _____________
Snap-through
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INSTABILITY FAILURE

= Shell Buckling failure — very sensitive to imperfections
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METHODS OF STABILITY ANALYSES

= Bifurcation approach — consists of writing the equation of
equilibrium and solving it to determine the onset of buckling.

= Enerqgy approach — consists of writing the equation expressing
the complete potential energy of the system. Analyzing this total
potential energy to establish equilibrium and examine stability of
the equilibrium state.

= Dynamic approach — consists of writing the equation of dynamic
equilibrium of the system. Solving the equation to determine the
natural frequency (o) of the system. Instability corresponds to
the reduction of o to zero.




STABILITY ANALYSES

Each method has its advantages and disadvantages. In fact,
you can use different methods to answer different questions

The bifurcation approach is appropriate for determining the
critical buckling load for a (perfect) system subjected to loads.

The deformations are usually assumed to be small.
The system must not have any imperfections.

It cannot provide any information regarding the post-buckling load-
deformation path.

The energy approach is the best when establishing the
equilibrium equation and examining its stability

The deformations can be small or large.
The system can have imperfections.

It provides information regarding the post-buckling path if large
deformations are assumed

The major limitation is that it requires the assumption of the
deformation state, and it should include all possible degrees of
freedom.




STABILITY ANALYSIS

= The dynamic method is very powerful, but we will not use it in this class
at all.

Remember, it though when you take the course in dynamics or earthquake
engineering
In this class, you will learn that the loads acting on a structure change its

stiffness. This is significant — you have not seen it before.

4EI 2EI

= What happens when an axial load is acting on the beam.

The stiffness will no longer remain 4EI/L and 2EI/L.

Instead, it will decrease. The reduced stiffness will reduce the
natural frequency and period elongation.

You will see these in your dynamics and earthquake engineering
class.



STABILITY ANALYSIS

FOR ANY KIND OF BUCKLING OR STABILITY ANALYSIS -
NEED TO DRAW THE FREE BODY DIAGRAM OF THE DEFORMED
STRUCTURE.

WRITE THE EQUATION OF STATIC EQUILIBRIUM IN THE
DEFORMED STATE

WRITE THE ENERGY EQUATION IN THE DEFORMED STATE
TOO.

THIS IS CENTRAL TO THE TOPIC OF STABILITY ANALYSIS

NO STABILITY ANALYSIS CAN BE PERFORMED IF THE FREE
BODY DIAGRAM IS IN THE UNDEFORMED STATE



BIFURCATION ANALYSIS

= Always a small deflection analysis
= To determine P, buckling load
= Need to assume buckled shape (state 2) to calculate
Example 1 — Rigid bar supported by rotational spring
k(@? ¢ P Rigid bar subjected to axial force P
S . Rotationally restrained at end
¢ >

Step 1 - Assume a deformed shape that activates all possible d.o.f.

L cosO e
L (1-cos6)



BIFURCATION ANALYSIS

L cosO —le—
L (1-cos6)

Write the equation of static equilibrium in the deformed state

C+ >M,=0  .—k@+PLsing=0
k6
L siné
For small deformations sing =20
p, k0 _k
L6 L
Thus, the structure will be in static equilibrium in the deformed state
when P =P = k/L

When P<P, the structure will not be in the deformed state. The
structure will buckle into the deformed state when P=P,




BIFURCATION ANALYSIS

Example 2 - Rigid bar supported by translational spring at end

P

T %
k
L s

N ol

Assume deformed state that activates all possible d.o.f.
Draw FBD in the deformed state

A

.
L (1-cos6)



BIFURCATION ANALYSIS

Write equations of static equilibrium in deformed state

P
L
/ IL sind
0

T k L sind

L cosO

A

<
L (1-cos6)

(+Z|v|0=o ~—(kLsin@)xL+PLsin@=0
P:kins,ine
L siné
For small deformations sind =46
, k L°6
e T TLe

kL

® Thus, the structure will be in static equilibrium in the deformed state
when P = P_ = kL. When P<Pcr, the structure will not be in the deformed
state. The structure will buckle into the deformed state when P=P



BIFURCATION ANALYSIS

Example 3 — Three rigid bar system with two rotational springs

P k k P
o = ® N
AA_ B C é%D
i -
> L = - > L -

Assume deformed state that activates all possible d.o.f.
Draw FBD in the deformed state

P

Assume small deformations. Therefore, sin6=0



BIFURCATION ANALYSIS

Write equations of static equilibrium in deformed state

T, Lsingf T -

— —y———

C+ SM,=0  ~k(26,-6,)-PLsing, =0  ~.k(26,-6,)-PL6,=0

C+ >M.=0  .—k(26,-6)+PLsing, =0  ..—k(26,-6,)+PL6, =0



BIFURCATION ANALYSIS

Equations of Static Equilibrium

k(26,—6,)—PL 6, =0 | {ZK—PL —k H@l}_{o}
_K(260,-6)+PL6, =0 -k 2k-PL](6,] |0
Therefore either 6, and 0, are equal to zero or the determinant of the

coefficient matrix is equal to zero.

When 6, and 0, are not equal to zero — that is when buckling occurs —
the coefficient matrix determinant has to be equal to zero for equil.

Take a look at the matrix equation. It is of the form [A] {x}={0}. It can
also be rewritten as ([K]-A[I]{x}={0}

/_Zk 7 \

&k K
k 2k 0 1




BIFURCATION ANALYSIS

= This is the classical eigenvalue problem. ([K]-A[I]){x}={0}.

= We are searching for the eigenvalues (1) of the stiffness matrix [K].
These eigenvalues cause the stiffness matrix to become singular

= Singular stiffness matrix means that it has a zero value, which means that
the determinant of the matrix is equal to zero.

k-PL -k |

~k  2k—PL
~(2k—PL)?—k? =0
©(2k—PL+k)e(2k—PL—k)=0
<. (3k—PL)e(k—PL)=0

= Smallest value of P, will govern. Therefore, P_=k/L



BIFURCATION ANALYSIS

Each eigenvalue or critical buckling load (P,,) corresponds to a buckling shape
that can be determined as follows

P.=k/L. Therefore substitute in the equations to determine &, and 6,

k(20,-6,)-PL 6, =0 ~K(26,-6,)+PL6,=0
_p -k _p —Kk

LetP=p, =K/ Let P=P, =K/

- k(26,-6,)—k6, =0 . —k(260,-6)+k6, =0

k6, k6, =0 k6, k@, =0

".6,=0, .0, =0,

All we could find is the relationship between 6, and 6,. Not their specific
values. Remember that this is a small deflection analysis. So, the values are
negligible. What we have found is the buckling shape — not its magnitude.

The buckling mode is such that 6,=6, > Symmetric buckling mode
P
A

k
—> ———————————— - - S <—
N ®- ,=0, D
P
L o
3=
B




BIFURCATION ANALYSIS

Second eigenvalue was P_=3k/L. Therefore substitute in the equations to
determine ¢, and 6,

k(26,-6,)-PL6,=0 -k (20,-6)+PLEH,=0
Let P =P, :3% LetP =P, :3%

k(2Q1 _92) _3k91 =0 —k(292 —91) +3k92 =0
.=k, —ko, =0 - k@, +k@, =0

5.0, =-6, 5.6, =6,

All we could find is the relationship between 6, and 6,. Not their specific
values. Remember that this is a small deflection analysis. So, the values are
negligible. What we have found is the buckling shape — not its magnitude.

The buckling mode is such that 6,=-6, - Antisymmetric buckling mode




BIFURCATION ANALYSIS

= Homework No. 1
= Problem 1.1
= Problem 1.3
= Problem1.4
= All problems from the textbook on Stability by W.F. Chen
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ENERGY METHOD

We will currently look at the use of the energy method for an
elastic system subjected to conservative forces.

Total potential energy of the system — IT — depends on the work
done by the external forces (W,) and the strain energy stored In
the system (U).

Mm=U-Ww,.

For the system to be in equilibrium, its total potential energy I1
must be stationary. That is, the first derivative of IT must be
equal to zero.

Investigate higher order derivatives of the total potential energy
to examine the stability of the equilibrium state, i.e., whether the
equilibrium is stable or unstable



ENERGY METHD

The energy method is the best for establishing the equilibrium
equation and examining its stability

The deformations can be small or large.
The system can have imperfections.

It provides information regarding the post-buckling path if large
deformations are assumed

The major limitation is that it requires the assumption of the
deformation state, and it should include all possible degrees of

freedom.



ENERGY METHOD

= Example 1 — Rigid bar supported by rotational spring

=  Assume small deflection theory

kogg I P Rigid bar subjected to axial force P
T . Rotationally restrained at end
[ <

Step 1 - Assume a deformed shape that activates all possible d.o.f.

L cosO P
L (1-cos6)



ENERGY METHOD — SMALL DEFLECTIONS

B

L cosO — —

L (1-cos6)
=  Write the equation representing the total potential energy of system
[1=U-W,
U=1ko
2

W, =P L(1-cosé)
Hz%k 62— P L (1—cos )

m:k6?—P Lsindg
do

dII

For equilibrium; — =0
déo

Therefore, k@—-PLsin@=0
For small deflections: k@—P LA =0

Therefore, P =%

roocer



ENERGY METHOD — SMALL DEFLECTIONS

= The energy method predicts that buckling will occur at the same load
P, as the bifurcation analysis method.

= AtP,, the system will be in equilibrium in the deformed.
= EXxamine the stability by considering further derivatives of the total
potential energy

= This is a small deflection analysis. Hence 6 will be - zero.

= In this type of analysis, the further derivatives of I1 examine the stability of
the initial state-1 (when 6 =0)

1

==k 0°—P L(@1-cosd 2
Il 2 ( ) When P < P, C(iwl;[ >0 ..Stable equilibrium
m:kQ—PLsinQ:k@—PLé? d2 1]
do When P > P, ~ <0 ..Unstable equilibrium
d Tl do

—=k-PL d21]
do When P =P, T =0 .. Not sure




ENERGY METHOD — SMALL DEFLECTIONS

= In state-1, stable when P<P_,, unstable when P>P

cr?

= No idea about state during buckling.

= No idea about post-buckling equilibrium path or its stability.

Ap
|

| Unstable
|

Indeterminate —» Tr

cr

Stable

>0



ENERGY METHOD — LARGE DEFLECTIONS

= Example 1 — Large deflection analysis (rigid bar with rotational spring)

[I=U-W,
U =£k 0’
2
W, =P L(1-cos8)
H:EKHZ—P L (1—cos &) }
2 L coso e—

Al _y 5P Lsing S
do

For equilibrium; dil =0
do

Therefore, k@—P Lsingd=0

Therefore, P= for equilibrium

L siné
The post —buckling P — @ relationship is given above



ENERGY METHOD — LARGE DEFLECTIONS

= Large deflection analysis
= See the post-buckling load-displacement path shown below

= The load carrying capacity increases after buckling at P,
= P.,iswhere 6 -> 0

Rigid bar with rotational spring

1.2 ¢
P=—1o for equilibrium
Lsing

0.8 P 0
i P, sind
2 06
o
(]
(@)
|

0.4

0.2

O I I I I I I
-1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

End rotation 0

== 00=0



ENERGY METHOD — LARGE DEFLECTIONS

= Large deflection analysis — Examine the stability of equilibrium using
higher order derivatives of I1

H:%kHZ—PLa—aBm

%zkH—P Lsing

d
2
d l_[—k—P Lcos @

92

k 0
Lsin@
JdPIT ko
" de? L sing
d?[1 O
=k(l-——
do? ( tane)
CdeTl
Ry
. Always STABLE
2
d” 1l =0 for=0

92

But, P =

Lcosé@

>0 Always (i.e.,all values of )

But,



ENERGY METHOD — LARGE DEFLECTIONS

At 0 =0, the second derivative of I[1=0. Therefore, inconclusive.

Consider the Taylor series expansion of IT at 6=0

dIl 1d°T1 1d°T] 1d I 1d"T1
M=Mo+351 ®*age7| ¥ *aae| 7t do* |, =iy
6=0 ) =0 ) 0=0 : =0

s Determine the first non-zero term of I1,

Hzikez—P L (1—cos 6) I, , = 1d70 94:ik 0* >0

i aiy - _ “adet|, 24

——=k@-P Lsing dé |,

Otlif’H d2T1 0

107 =k —-P Lcosé dg? o

d’ H d”11 =P Lsin6d=0

5 =P Lsin@ 46° »

d“H d*T1

40" 17" PLcosd=PL=k

6=0

n

Since the first non-zero term is > 0O, the state is stable at P=P_, and 6=0



ENERGY METHOD — LARGE DEFLECTIONS

Load P/Pcr

Rigid bar with rotational spring

1.2 ¢

o
o]

o
o

o
~

0.2

M

U

e g

STABLE

STABLE

o=

STABLE

JIUIS gl

-0.6

-0.4

-0.2 0 0.2

End rotation 0
-O—-00=0

0.4

0.6

0.8




ENERGY METHOD — IMPERFECT SYSTEMS

Consider example 1 — but as a system with imperfections
= The initial imperfection given by the angle 6, as shown below

L (cos6,-cosO)



ENERGY METHOD — IMPERFECT SYSTEMS

[T=U-W,

L coso — —
L (cos6,-cos0)

U =%k(«9—«90)2
W, =P L(coség, —cosf)
:%k (0-6,)* —P L(cosg, —cos0)

m:k (6-6,)—P Lsing

do
For equilibrium; dil =0
dé

Therefore, k(6-6,)-P Lsind=0
k(0-6,)
L sind
The equilibrium P — @ relationship is given above

Therefore, P= for equilibrium



ENERGY METHOD — IMPERFECT SYSTEMS

Load P/Pcr

0.8

o
o

o
~

0.2

_k(0-6,) P 6-6,

L sin@ P sing

cr

P — @ relationships for different values of 6, shown below :

P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

End rotation 0
=0=00=0 =O=00=0.05 =0=00=0.1 0= 00=0.2 =O—00=0.3




ENERGY METHODS - IMPERFECT SYSTEMS

As shown in the figure, deflection starts as soon as loads are
applied. There is no bifurcation of load-deformation path for
Imperfect systems. The load-deformation path remains in the
same state through-out.

The smaller the imperfection magnitude, the close the load-
deformation paths to the perfect system load —deformation path

The magnitude of load, is influenced significantly by the
Imperfection magnitude.

All real systems have imperfections. They may be very small but
will be there

The magnitude of imperfection is not easy to know or guess.
Hence if a perfect system analysis is done, the results will be
close for an imperfect system with small imperfections



ENERGY METHODS — IMPERFECT SYSTEMS

= Examine the stability of the imperfect system using higher order

derivatives of I1 1 ,
szk (0-6,)° —P L(cos8, —cosB)

%:k (6-6,)—P Lsing

d
2
d 1;[ =k—-P Lcoséd
. Equilibrium path will be stable
2
if d 91;[ >0
le.,if k—P Lcosé@ >0
K
L cosé
k(6@-6,) - Kk
L sind L cosé
le., 6 -6, <tand

= Which is always true, hence always in STABLE EQUILIBRIUM

e, if P<

Le., If



ENERGY METHOD — SMALL DEFLECTIONS

Example 2 - Rigid bar supported by translational spring at end

P

T %
k
L s

N ol

Assume deformed state that activates all possible d.o.f.
Draw FBD in the deformed state

A

.
L (1-cos6)



ENERGY METHOD — SMALL DEFLECTIONS

Write the equation representing the total potential energy of system

H:U _We P
L
U = 1k (Lsing)? = 1k 1207 / ILsme
2 2 0 .

W, =P L (1-cos ) n
1

>k L sind

H:Ek L> 0° —P L(1-cos0)
%:k 20-P Lsing ) o

dII

For equilibrium; — =0
do

Therefore, kL?@—-PLsind=0

For small deflections: k L°6—-P LA =0
Therefore, P, =k L

roocer



ENERGY METHOD — SMALL DEFLECTIONS

= The energy method predicts that buckling will occur at the same
load P, as the bifurcation analysis method.

= AtP

cr

the system will be in equilibrium in the deformed.

Examine the stability by considering further derivatives of the

total potential energy

= This is a small deflection analysis. Hence 6 will be = zero.

= In this type of analysis, the further derivatives of IT examine the
stability of the initial state-1 (when 6 =0)

Hzék L* 8 =P L(1—-cos )

d—=k L &—P Lsiné@
déo

d*T1
de’
For small deflections and 8 =0
d?T1
do?

=k L>-P L coséd

—kL>-PL

d? Il

When, P <k L >0
62
2
When, P >k L d 1_[<O
02
2
When P =KL d l;[zO
do

- STABLE

- UNSTABLE

. INDETERMINATE




ENERGY METHOD — LARGE DEFLECTIONS

Write the equation representing the total potential energy of system

[I=U-W,
U =%k (L sin8)?
W, =P L(-cosé)

H:%k L* sin®@—P L(1-cos®)

afll =k L®sin@cos@—P Lsiné - (o)

dé
For equilibrium; dil =0
dé

Therefore, k L? sindcos@—P Lsind=0
Therefore, P=k Lcos@d for equilibrium
The post — buckling P — @ relationship is given above



ENERGY METHOD — LARGE DEFLECTIONS

= Large deflection analysis
= See the post-buckling load-displacement path shown below

= The load carrying capacity decreases after buckling at P,
= P,iswhere >0

Rigid bar with translational spring

1.2 T
P=k Lcos@ for equilibrium

i =Cos@
P

o
©

Load P/Pcr
o
()]

o
~

0.2

-1 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1
End rotation 0



ENERGY METHOD — LARGE DEFLECTIONS

= Large deflection analysis — Examine the stability of equilibrium using
higher order derivatives of I1

Hzgk L* sin®@—P L (1—cosé)

%: k L? sin@dcos@—P Lsing

d
2
d 1;[:k L* cos26 — P L cosé
do
For equilibrium P =k L cosé
2
d 1;[:k L* cos 20 —k L* cos® &
déo
2
(?101} =k L* (cos* @ —sin® @) —k L* cos® &
2
d 1;[:—k L* sin® @
do
L d° Tl

157 <0 ALWAYS. HENCE UNSTABLE




ENERGY METHOD — LARGE DEFLECTIONS

=11, +

At 0 =0, the second derivative of I[1=0. Therefore, inconclusive.

Consider the Taylor series expansion of IT at 6=0

go, 141
4 do* |,

1d%T]

o 04+ +1dH o"
20 d6? |,

""" nl do"

dIl
do

3
6?2+£|d 1;[
3 do° |,

0=0

6=0

Determine the first non-zero term of I1,

1 i
=~k L%sin?0—-P L(1-cos8) =0 4
[1=>kLsi ( ) A1l _ gk 12 c0s20+ P Leoso

m=1k L* sin20 —P Lsind=0 q*
de 2 — =—4K L* +k L* =3k L
d*I1 )
— =k L" cos20-P Lcosd =0 d*T] 0
<
I do*
=-2k L*sin20+P Lsin@=0| |-~ UNSTABLE at & =0 when buckling occurs

93

Since the first non-zero term is < O, the state is unstable at P=P_ and 6=



ENERGY METHOD — LARGE DEFLECTIONS

o
o

Load P/Pcr
o
(@)}

o
~

Rigid bar with translational spring

N

UNSTABLE

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
End rotation 0



ENERGY METHOD - IMPERFECTIONS

= Consider example 2 — but as a system with imperfections
= The initial imperfection given by the angle 6, as shown below

S

L cosO

A
A

— —
L (cos6,-cosb)



ENERGY METHOD - IMPERFECTIONS

HZU—We R

U :%k L* (sin@—sin@g,)’

L cosO

A

W, =P L(cosé8, —cos )
H=%k L*(sin@—sind,)* — P L(cosd, —cos )

dll

dé?_k L*(sin@ —sin@,) cos@— P Lsing

dll

For equilibrium; — =0
do

Therefore, k L?(sin@ —sin@ ) cos@—P Lsin@=0

Therefore, P=k Lcosé (1— % for equilibrium
sind

The equilibrium P — @ relationship is given above

_’I ‘_
L (cos6,-coso)



ENERGY METHOD - IMPERFECTIONS

Load P/Pcr

P=k Lcosd (1- N 2P cspa_ %
sin@ P, sin@d
P o0 kLsing+ 3%y _0 sing, =sin’6
12 do sin“ @
' : _ 3
P =k L COS™0 Envelope of peak

0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0]
End rotation 0

=0—-00=0 0= 00=0.05 =0—=00=0.1 O~ 60=0.2 —>—00=0.3




ENERGY METHOD - IMPERFECTIONS

As shown in the figure, deflection starts as soon as loads are
applied. There is no bifurcation of load-deformation path for
Imperfect systems. The load-deformation path remains in the
same state through-out.

The smaller the imperfection magnitude, the close the load-
deformation paths to the perfect system load —deformation path.

The magnitude of load, is influenced significantly by the
Imperfection magnitude.

All real systems have imperfections. They may be very small but
will be there

The magnitude of imperfection is not easy to know or guess.
Hence if a perfect system analysis is done, the results will be
close for an imperfect system with small imperfections.

However, for an unstable system — the effects of imperfections
may be too large.



ENERGY METHODS — IMPERFECT SYSTEMS

= Examine the stability of the imperfect system using higher order

derivatives of I1 H:%k % (sin@—sin,)? P L (cos, — cos &)

%:k L? (sin@—sing,) cosd —P Lsing
d*I1 2 T

- =k L (cos 20 +sin g, sind) — P Lcos &
do

For equilibrium P = k L (1— >IN 00}
siné

2 -
- d 1;[=kL2(c032¢9+sin<9osin6?)—k L’ 1—Sl_n—90 cos® &
déo sind
2 i ; 2
- 1;[sz2 c0329—3in20+sin903in9—c0326’+Sm0(fcos ‘0
do i sind
2 i : 2
d l;lszz —sin29+sin905in6’+sm(9‘fcos 4
déo i sind
_ d2H_kL2_—sin36’+sin90(sin29+coszt9)
do? I sin &
_ d2H_kLz_—sin"”67+sin¢9O
de? I sin@




ENERGY METHOD — IMPERFECT SYSTEMS

d’T1
do’
d’I1

2

d?TIl

2

=kf{

>0 when P <P,

—sin® @ +sin 490}

sind

<0OwhenP>P_,

.. Stable

.. Unstable

P=Kk LcosH(l—Sl_mg0 and P_ =kLcos®@
sin @
When P <P_,
k Lcose(l—SI_neo)< k Lcos®é
siné
..01_5|.n¢90 <cos’ @
sinéd
._.1_5|_né?0 <1-sin’*é@
sinéd
2 : _ «ind
-.sing, >sin*0  and d ljzk L sm@o_ SIn"0150
do sin@
When P > P,
k Lcos@(l—SI_neo) >k L cos®@
siné
L % > cos’ @
siné
.'.1—SI_n % >1-sin’ @
siné
2 . _ ain3
-.sing, <sin®*0  and d E[:k L sm@o- SN0 1 g
déo siné@




Chapter 2. — Second-Order Differential Equations

= This chapter focuses on deriving second-order differential
equations governing the behavior of elastic members

s 2.1 — First order differential equations

= 2.2 — Second-order differential equations



2.1 First-Order Differential Equations

= Governing the behavior of structural members
= Elastic, Homogenous, and Isotropic
= Strains and deformations are really small — small deflection theory
= Equations of equilibrium in undeformed state

= Consider the behavior of a beam subjected to bending and axial
forces



2.1 First-Order Differential Equations

= Assume tensile forces are positive and moments are positive
according to the right-hand rule

= Longitudinal stress due to bending

P M, M,
o=—+ y ——=X
A I

X y

= This is true when the x-y axis system is 1

a centroidal and principal axis system. - I -
. y dA = I X dA = JX y dA=0 ..Centroidal axis T Right-hond rule
:A A A / //
:A\ 8 A M, =P P
I, and 1, are principal moment of inertia ’ //}M\*p\

!

(b)

Fig. 2.1. Cross section of a bar subjected to bending and axia

| force




2.1 First-Order Differential Equations

The corresponding strain is ¢ = P + M, y — M, X
AE EI,° EI,
IVIX
If P=M =0, then &= £, y /‘
Plane-sections remain plane and perpendicular fo®

to centroidal axis before and after bending

The measure of bending is curvature ¢ which
denotes the change in the slope of the
centroidal axis between two point dz apart

tang, = =
y
For small deformations tang, = ¢,
g ) a/
¢y = y |
M,
NS £l
~M,=El, ¢, andsimilarly M, 6 =EI, ¢



2.1 First-Order Differential Equations

s Shear Stresses due to bending

Middle:ling—"" \z
/ 5

+
X L

O (xy, y4) Origin of reference s
E (x5, y,) End of reference s
C (0,0) Centroid

Q@ (x, y) General point

S (X0, ¥o) Shear center

t(s) Thickness, function of s

s Coordinate along middle line of
cross section

% Principal centroidal axes

Z Longitudinal centroidal axis

Fig. 2.3. Dimensions of a thin-walled open
cross section

/ P
Ttdz+d(rt)dz | &Gs
y ot ds +(do)t ds

(a)

(c)

Fig. 2.4. Shear stresses on an element of a thin-walled open cross section



2.1 First-Order Differential Equations

= Differential equations of bending

= Assume principle of superposition

= Treat forces and deformations in y-z and x-z
plane seperately

= Both the end shears and g, act in a plane
parallel to the y-z plane through the shear

center S
(a)
dv,
- 7 = _q
dz ! " 1, +am,
M, +dm,
dMX V X*_——C+«_ ( S A S e >—‘Z
dz Sy qus J Y 4 +ay
+
dM y Crr bbby
d =4, lV”WY K l
7 y
2 f
. d (EIX ¢y):_ (b) (c)
o dz 2 y Fig. 2.6. Forces in the y-z plane of a bar element

“El 4l =-q,



2.1 First-Order Differential Equations

= Differential equations of bending

E Ix ¢),/’ - _qy
Vv
# =~
" wy?]
For small deflections
¢y — _V”

~ElL VY=g,

"

3/2

Similarly|E 1, u"™ =q,
u — deflection in positive x direction
v — deflection in positive y direction

= Fourth-order differential equations using first-
order force-deformation theory



Torsion behavior — Pure and Warping Torsion

= Torsion behavior — uncoupled from bending behavior

= Thin walled open cross-section subjected to torsional moment
= This moment will cause twisting and warping of the cross-section.
= The cross-section will undergo pure and warping torsion behavior.
= Pure torsion will produce only shear stresses in the section
= Warping torsion will produce both longitudinal and shear stresses

= The internal moment produced by the pure torsion response will be
equal to M, and the internal moment produced by the warping
torsion response will be equal to M,

= The external moment will be equilibriated by the produced internal
moments

s M=Mg, + My



Pure and Warping Torsion

Mz=Mg, + My,
Where,

| MSV: G KT (1), and MW - - E IW (1)"’

= Mg, = Pure or Saint Venant’s torsion moment

= K;=J = Torsional constant =

= ¢ IS the angle of twist of the cross-section. It is a function of z.

= |, IS the warping moment of inertia of the cross-section. This is
a new cross-sectional property you may not have seen before.

Mz= G Ky ¢' - E I, ¢

A (3), differential equation of torsion



Pure Torsion Differential Equation

= Lets look closely at pure or Saint Venant’s torsion. This occurs when
the warping of the cross-section is unrestrained or absent

ydz=rd¢g

d ,
Ly=r—=r
r=r3, ¢

nt=Grg

"M =[rrdA=G¢ [r® dA
A A

AM,, =G K, ¢
where, K, =] :fr2 dA
A

= For a circular cross-section — warping is absent. For thin-walled open
cross-sections, warping will occur.

= The out of plane warping deformation w can be calculated using an
equation | will not show.



Pure Torsion Stresses

The torsional shear stresses vary linearly about the center of the thin plate




Warping deformations

= The warping produced by pure torsion can be restrained by the:
(a) end conditions, or (b) variation in the applied torsional
moment (non-uniform moment)

= The restraint to out-of-plane warping deformations will produce
longitudinal stresses (c,,) , and their variation along the length
will produce warping shear stresses (t,,) -

Twisting prevented

at this end

v -~ 4 > A T E 77 = : L | ,L
i h /! |
I ! 7% A Center of top s SR
Z-~ ,--""4_ v - flange after

i

[wisting ~ >/ J
h A 3 S Y
g

i ['wisting prevented at this end Section A-A

Figure 8.5.2 Torsion of an I-shaped section.



Warping Torsion Differential Equation

= Lets take a look at an approximate derivation of the warping
torsion differential equation.

= This is valid only for | and C shaped sections. s
Uy =¢ g \" *l'*

where u, = flange lateral displacement ‘ e

M, =moment in the flange L

V. = Shear force in the flange 4_\___34 .
El, ul=-M, e borrowing d.e. of bendingy;, .. s5.3 warpine shear
El, uf ==V, force on I-shaped section.
M,, =V, h

~M, =-E1l,u"h

h2
M, =—-EI, —¢"
w=-El =4

My, =-E1, ¢"]

where 1,, is warping moment of inertia — new section property




Torsion Differential Equation Solution

= Torsion differential equation M,=Mg,+M,, = G K; ¢- E |, ¢~

= This differential equation is for the case of concentrated torque
G K; ¢ El, ¢"=M,

" M
R E I, ¢_ E I,
M, : M, z
m_ ~J¢=C,+C,cosh Az +C,sinh Az +
¢——E| P EI,
= Torsion dlfferentlarequatlon for the case of distributed torque
mZ:_dMZ
dz
G KT ¢ﬂ_ ¢IV — _mZ
m, z°
gy SR Jo=C,+C. z+C,coshAz+C,sinh Az ——2
7 ElL, ¢_ |W p=Carbs it ! 2G K,
¢” —

= The coefficients CW .. Cg can be obtained using end conditions



Torsion Differential Equation Solution

Torsionally fixed end conditions are givenby ¢ =¢" =0

These imply that twisting and warping at the fixed end are fully
restrained. Therefore, equal to zero.

Torsionally pinned or simply-supported end conditions given by:
¢ — ¢” — O

These imply that at the pinned end twisting is fully restrained (¢=0) and
warping is unrestrained or free. Therefore, ¢,,=0 2 ¢"=0

Torsionally free end conditions given by ¢=¢” = ¢”’= 0

These imply that at the free end, the section is free to warp and there
are no warping normal or shear stresses.

Results for various torsional loading conditions given in the AISC
Design Guide 9 — can be obtained from my private site



Warping Torsion Stresses

Restraint to warping produces longitudinal and shear stresses

GW = E\Nn ¢”
Ty t=—E S, ¢"
where,

W_ = Normalized Unit Warping — Section Property
S,y =Warping Statical Moment — Section Property

The variation of these stresses over the section is defined by the
section property W, and S,

The variation of these stresses along the length of the beam is defined
by the derivatives of ¢.

Note that a major difference between bending and torsional behavior is

= The stress variation along length for torsion is defined by derivatives of ¢,
which cannot be obtained using force equilibrium.

= The stress variation along length for bending is defined by derivatives of v,
which can be obtained using force equilibrium (M, V diagrams).



Torsional Stresses

(c) Shear Stress Due to Warping (d) Momal Stress Due 1o Warping



Torsional Stresses

f
M A
| Tw? 'T“""m__q__r' et
Tmn,\tﬁjtml [ T
Tt = EW.-@E'"
(c) Shear Stress Dus o Warping {d) Normal Stress Due to Warping

Fioure 4.2,

{c) Shear Stress Due 1o Warping

Figure 4.3.



Torsional Section Properties for | and C Shapes

S:-ﬂ Swi
W il; Swo L Swo ‘E o Swo - Swe
=] Weo wo ]
vl i Wea 5
" W-, M-, S-, and HP-Shapes | C- and MC-Shapes 1 e
] Wio | 5 - 5
T Swo ——> Swo YO S L w T Sw
Snl Swi
Tersional Properties Statical Moments Torsional Properties Statical Moments
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¢ and derivatives for concentrated torque at midspan
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Summary of first order differential equations

—EL V=M, e Q)

El,u"=M, e (2)

GK ¢ —El,¢"=M, e, 3)
NOTES:

(1) Three uncoupled differential equations

(2) Elastic material — first order force-deformation theory

(3) Small deflections only

(4) Assumes — no influence of one force on other deformations

(5) Equations of equilibrium in the undeformed state.



HOMEWORK # 3

Consider the 22 ft. long simply-supported W18x65 wide flange beam
shown in Figure 1 below. It is subjected to a uniformly distributed load
of 1k/ft that is placed with an eccentricity of 3 in. with respect to the
centroid (and shear center).

At the mid-span and the end support cross-sections, calculate the
magnitude and distribution of:

= Normal and shear stresses due to bending
= Shear stresses due to pure torsion
= Warping normal and shear stresses over the cross-section.

Provide sketches and tables of the individual normal and shear stress
distributions for each case.

Superimpose the bending and torsional stress-states to determine the
magnitude and location of maximum stresses.



HOMEWORK # 2

e,

W18x65

Cross-section



Chapter 2. — Second-Order Differential Equations

= This chapter focuses on deriving second-order differential
equations governing the behavior of elastic members

= 2.1 — First order differential equations

s 2.2 — Second-order differential equations



2.2 Second-Order Differential Equations

= Governing the behavior of structural members
= Elastic, Homogenous, and Isotropic
= Strains and deformations are really small — small deflection theory
= Equations of equilibrium in deformed state

= The deformations and internal forces are no longer independent.
They must be combined to consider effects.

= Consider the behavior of a member subjected to combined axial
forces and bending moments at the ends. No torsional forces
are applied explicitly — because that is very rare for CE
structures.



Member model and loading conditions

/}’

R i MBy /y
/T\MBX

R p \x

y
Fig. 2.30. End forces on a prismatic bar

|

Member is initially straight and prismatic.
It has a thin-walled open cross-section

Member ends are pinned and prevented
from translation.

The forces are applied only at the
member ends

These consist only of axial and bending
moment forces P, My, M1y, Mgy, Mgy

Assume elastic behavior with small
deflections

Right-hand rule for positive moments and
reactions and P assumed positive.



Member displacements (cross-sectional)

Consider the middle line of thin-

walled cross-section g
Qix,y)
X and y are principal coordinates SR/
through centroid C ’ ¢\~l
¥
Q is any point on the middle line. ()
It has coordinates (X, y). -~ T

Shear center S coordinates are
(Xo’ yO)

Shear center S displacements
are u, v, and ¢

(b)

Fig. 2.31. Displacement of a point q in a cross section



Member displacements (cross-sectional)

Displacements of Q are:

= + |n Xt
UQ u a ¢ S “ Qix,y)
Vo=V-—ag¢ Cos a
where a is the distance from ;_;'IS(XO o)

But, sin a = (Yy-y) / @ (@)
cos a = (Xy-X) / a

Therefore, displacements of (
Ug=U+ ¢ (YoY)

Vo=V — ¢ (Xo—X)
Displacements of centroid C
Us= U+ ¢ (Yo)

Ve=V - ¢ (XO)

(b)

Fig. 2.31. Displacement of a point q in a cross section



Internal forces — second-order effects

Consider the free body diagrams of
the member in the deformed state.

Look at the deformed state in the x-z
and y-z planes in this Figure.

The internal resisting moment at a
distance z from the lower end are:

X

My:-MBY+RXZ_PuC

The end reactions R, and R, are:

Ry= Mgy + Mgy) /'L
Ry = (M + Mgy) / L

{ ‘My
— et -
4 z
R}’
X s = X S
M \PMBX

By P P
(a) (b)

Fig. 2.32. Forces in the x-z and the y-z plane



Internal forces — second-order effects

= Therefore,

M, =—-Mgy +E(MTX +MBX)+ P(V_¢ Xo)

Z
M, =—-Mpgy +I(MTY +MBY)_P(U+¢ YO)



Internal forces in the deformed state

= Inthe deformed state, the cross-section is such that the principal
coordinate systems are changed from x-y-z to the £—n—{ system

X
\
\
\
AY
\
\
\
\
\
\
\
\
\
\

Fig. 2.33. Definition of the £-5 coordinate
system









Internal forces in the deformed state

The internal forces M, and M, must be transformed to these new {-—7-

s axes G
| | A [

Since the angle ¢is small g » i

MszX + ¢My {f‘ﬁf

M, =M, - ¢ M, e

Z
M, =—-Mzgy +E(MTX +Mgy )+P(V—¢x,) M, sin é

My:_MBY+E(MTY+MBY)_P(U+¢yO) y 7

Mg =-Mpy +E(MTX +MBX)+PV_¢(P X0+MBY_E(MTY +MBY)]

Z Z
"'Mn:_MBYJFE(MTY +MBY)+PU+¢(_P Yo + Mgy _E(MTX +MBX))



Twisting component of internal forces

= Twisting moments M, are produced by the internal and external
forces

= There are four components contributing to the total M,
(1) Contribution from M, and M, — M,
(2) Contribution from axial force P — M,
(3) Contribution from normal stress ¢ — M ;

(4) Contribution from end reactions R, and R, — M,

= The total twisting moment M, =M., + M, + M; + M,



Twisting component — 1 of 4

@ \?’
z Z
A e A
=AM/ a2) e wy(dwdz)

3
M, <= My <=
e~ <4
dz az V
u
Xt V-
(@) (b)

= Twisting moment due to M, & M,

= M,,=M;sin (du/dz) + Msin (dv/dz)

= Therefore, due to small angles, M, = M, du/dz + M, dv/dz
= M,=Mu+M v



Twisting component — 2 of 4

>N
>N

P P
\ \
\ \
\ \
\4_\ “1

£ / \P(du/ az) " T \P (dv/dz)

\'

(c) (d)
Fig, 2.35, Twisting due to components of M, M, and P

The axial load P acts along the original vertical direction

In the deformed state of the member, the longitudinal axis C is not
vertical. Hence P will have components producing shears.

These components will act at the centroid where P acts and will have
values as shown above — assuming small angles



Twisting component — 2 of 4

= These shears will act at the centroid C, which is eccentric with
respect to the shear center S. Therefore, they will produce
secondary twisting.

Pldu/dz) l

“7
5+l Pldv/dz)
s

Fig. 2.36. Twisting due to the com-
ponents of P

= M, =P (y,du/dz - x, dv/dz)
= Therefore, M, =P (yo U= Xq V)



Twisting component — 3 of 4

The end reactions (shears) R, and R, act at the shear center S
at the ends. But, along the member ends, the shear center will
move by u, v, and ¢.

Hence, these reactions will also have a twisting effect produced
by their eccentricity with respect to the shear center S.

M§4+Ryu+RXv:O AR,
Therefore,

Mg = — (Mgy + Mgy) VIL — (Mqy + Mgy) U/L

Tt

Mg (a)

Fig. 2.38. Twisting due to the end
shears



Twisting component — 4 of 4

= Wagner’s effect or contribution AS
— complicated.

= Two cross-sections that are d¢
apart will warp with respect to
each other.

= The stress element o dA will
become inclined by angle (a
d@/d ) with respect to dg axis.

= Twist produced by each stress
element about S is equal to

Fig. 2.37. Twisting due to the differential warping
of two adjacent cross sections



Twisting component — 4 of 4

Y
dg
M5 = —Kz—f ------ for small angles



Twisting component — 4 of 4

Let,ja a’dA=K

A
“My=-K I
dg

__dg
M, =—K =2
63 dz




Total Twisting Component

= M=Mgy+ Mg+ Mg+ M,
My = Myu'+ M, v’
M =P (Yo U'— X% V)
Mgy == (Myy + Mgy) VIL = (Mgy + Mgy) UL
=-K¢’
= [herefore,

MgZ’Mx u+ My v+ P (Yo u' =X V) = (Mgy + Mgy) VIL = (My + Mgy) UIL-K

R/IWh”l%T L( Mgy )+ PV ¢(PXO+MBY E(MTYJFMBY)j

Z Z
M, :_MBY+I(MTY +MBY)+PU+¢(_P Yo + Mgy _I(MTX +MBX)]



Total Twisting Component

My=Mg+ Mg+ M+ M,
Mgy == (Myy + Mgy) VIL = (Mgy + Mgy) UL
Therefore,
' ' ' ' \ u VAl
M =M U+M V' +P (Y, U —xov)—(MTY+MBY)I—(MTx +MBX)E—K¢
' ' v u VAl
M= (M 4P Yo U (M =P X0) V= (Myy + My ) = (M + Mg ) -~ K
But,sz—MBx+E(MBX+MTX)+P(V—¢XO)

Z
and, My :_MBY +I(MBY +MTY)_P(U+¢ yO)

Z , VA '
M; :(_MBX _I(MBX +MTX)+P YO)U +(_MBY _I(MBY +MTY)_P Xo)V

\ u - ,
_(MTY +MBY)E_(MTX +MBX)I_K ¢



Internal moments about the {—n— axes

Thus, now we have the internal moments about the £—n—{ axes for the

deformed member cross-section.

M. =M, +E(|\/|TX My )+PV—g

4
Z
I\/l,7 :_MBY +E(M7—)/+MB)/ )_Pu+¢

¢

\ u -~ ,
_(MTY +MBY)E_(MTX +MBX)E_K ¢

Z
P x,+ Mg, _I(MTY +Myg, )]

z
—P Yo+ Mgy _I(MTX’LMBX ))

Z ! Z !
M :(_MBX _E(MBX +MTX)+P yo)u +(_MBY _I(MBY +MTY)_P Xo)V

vy



Internal Moment — Deformation Relations

The internal moments M, M,, and M will still produce flexural bending
about the centroidal principal axis and twisting about the shear center.

The flexural bending about the principal axes will produce
linearly varying longitudinal stresses.

The torsional moment will produce longitudinal and shear
stresses due to warping and pure torsion.

The differential equations relating moments to deformations are
still valid. Therefore,

Mé/: G KT ¢’_ E IW ¢’”



Internal Moment — Deformation Relations

Therefore,

, Z Z
M. =-E I, v'=-My, +I(MTX +MBX)+PV—¢(P X, + Mg, —I(I\/ITY +MBY)j

" Z Z
M,=EIl, u" =-My +E(MTY+MB)/)_P u+¢(—P Yo + Mgy _E(MTX+MBX)j

! "m Z !/
Mg:G Kig—EIl, ¢ :(_MBX_E(MBX +Mp ) +Py)u'+

Z ' \' u VAl
(_MBY _E(MBY +MTY)_P XO)V _(MTY +MBY)E_(MTX +MBX)I_K ¢



Second-Order Differential Equations

You end up with three coupled differential equations that relate
the applied forces and moments to the deformations u, v, and .

Therefore,

1IE I, V’,+PV_¢(P Xo + Mgy _E(MTY +MBY)j:MBX _E(MTX +MBX)

2 |E Iyu”+Pu—¢(_P yo'l'MBx (MTX+MBXJ I\/IBY—l_ (MTY+MBY )

m ( ! / Z
3|E 1, 9" — (G K; +K) ¢ +u (_MBX_E(MBX+MTX)+PyO)

, Z Vv u
—V (MBY +E(MBY +MTY)+P XO)_I(MTY +MBY)_E(MTX +MBX):O

These differential equations can be used to investigate the elastic
behavior and buckling of beams, columns, beam-columns and
also complete frames — that will form a major part of this course.



Chapter 3. Structural Columns

3.1 Elastic Buckling of Columns
3.2 Elastic Buckling of Column Systems — Frames
3.3 Inelastic Buckling of Columns

3.4 Column Design Provisions (U.S. and Abroad)



3.1 Elastic Buckling of Columns

Start out with the second-order differential equations derived in
Chapter 2. Substitute P=P and M,y = Mgy = M, = Mg, =0

Therefore, the second-order differential equations simplify to:

1 [ELV'+PVv—g(Px,)=0
2 |[El,u"+Pu-¢(-Py,)=0
El, ¢"—(GK; +K) g +u" (Py,)—V'(Px)=0

This is all great, but before we proceed any further we need to
deal with Wagner’s effect — which is a little complicated.



Wagner's effect for columns

K¢ =[ca® g'dA
A
where,

M M X
P MY M +EW, ¢

O =

AL,
M§:P(V_¢Xo)
|\/|77=—P(U+¢ yo)
K¢,__[|:_'|:+ P(V_If XO) y__P (u—:_y¢ yO)X-l‘EWn ¢”:|¢I aZ dA
...K¢r_|:_Z+P(V_I¢XO)y__P (U-:—¢ yO)X+EWn ¢ni|¢rj‘ a.2 dA

Neglecting higher order terms; K ¢’ = —%gb’j a” dA
A




Wagner's effect for columns

But, a® = (X, — X)* + (Y, — ¥)’

S a2dA={ (x,—x)2+(y,—y)? dA

A A

[ a2 dA= [ [x§+y§+x2+y2—2 X, X—2 Y, y]dA

A A

o[ a? dA:[xé+y§]jdA+Ix2dA+Iy2dA—2x0Ix dA—2y0J'ydA
A A A A A

A

o @t dA= (¢ +yE) AT+,
A

Finally,

K¢’=—;[(x§+y§) A+l o+l g

IZ r__ P 2 2 IX-i_ly '
.- ¢—_ (Xo+y0)+ A ¢

|, +1
Letﬁf={(x§+y§)+ XA y}

K¢ =—PT¢




Second-order differential equations for columns

= Simplify to:

1|ElL,V'+Pv—¢(Px)=0
2 |E1,u"+Pu+g¢(Py,)=0
S|E 1, ¢"+(PT2 =G K,) ¢/ +U' (P yo) =V' (P x) =0

= Where

I +1,

2 2 2
°=X +Yyg+
0 0 0
A




Column buckling — doubly symmetric section

For a doubly symmetric section, the shear center is located at the
centroid x,= y, = 0. Therefore, the three equations become uncoupled

1 EILV'+Pv=0
, [ET,u"+Pu=0
s |[EN, ¢"+(PT -G K;)¢' =0

Take two derivatives of the first two equations and one more derivative
of the third equation.

1 [ELVV+PV'=0
2 |[E1,u"+Pu"=0

B¢ +(PT7 -G K;) ¢ =0

=2
Let, FF’'=— F'=— F/= P —C K
= E | E |

W

P P
X y



Column buckling — doubly symmetric section

1 ViV+FV2 V”:O
2 UM +F’u"=0

; ¢iv n F¢2¢” _ O

All three equations are similar and of the fourth order. The
solution will be of the form C, sin Aiz+ C,cos 1z+C;z+ C,

Need four boundary conditions to evaluate the constant C,..C,
For the simply supported case, the boundary conditions are:
u=u"=0; v=v'=0; ¢g= ¢"=0

Lets solve one differential equation — the solution will be valid for
all three.



Column buckling — doubly symmetric section

VY +FZv'=0

Solution is
v=C,sinkz+C,cosF,z+C,z+C,
~V"=-C, F’sinF,z—C, F*cosF,z
Boundary conditions :
v(0)=Vv"(0)=v(L)=Vv"(L)=0

C,+C,=0 v(0) =0
c,=0 . v'(0)=0
C,;sinF,L+C,cosF,L+C,L+C, .- v(L)=0
~C, F’sinFL-C, F?cosFL - v'(L) =0
[~ O 1 O 1_ rC]-\ ro\
0 1 0 o|lc,| |o

sin F, L cosFL L 1(lc,[7)of

| -F/sinF,L -F’coskF,L 0 0](C,] (O]

The |coefficient matrix| =0
S F?sinF,L=0
~.SinF,L=0
~EFL=nrx

F = P _nhz
El L

2 2
.-.PX:”Lf El,
Smallest value of n=1:

2
:a=”§“




Column buckling — doub

y symmetric section

Similarly,
sinF,L=0
FL=nrx
E P nrx
\/Ely L
n’ z*
~.P, = E EI,
2
7 E I
Smallest value of n=1: |P, =———
L
( 72 E |l
I:)X_ L2
m*El,
Summary < [P, = -
n° El, 1
N o

Similarly,
ﬁnaL:O
.zaLGﬂ
LE - Pﬁ—GKT:nn
’ El, L
n° z° 1
.'.P¢:( E EIW+GKTJ_—2
r0
Smallest value of n=1:
n® z° 1
P¢:[ o EIW+GKTJ_—2
r0




Column buckling — doubly symmetric section

Thus, for a doubly symmetric cross-section, there are three distinct
buckling loads P,, P,, and P,.

The corresponding buckling modes are:
v = C; sin(#z/L), u =C, sin(zz/L), and ¢ = C;sin(#z/L).

These are, flexural buckling about the x and y axes and torsional
buckling about the z axis.

As you can see, the three buckling modes are uncoupled. You must
compute all three buckling load values.

The smallest of three buckling loads will govern the buckling of the
column.



Column buckling — boundary conditions

Consider the case of fix-fix boundary conditions:

V' +FZv'=0

Solution is
v=C,sinFz+C,cosF,z+C,z+C,
~V'=C, F,cosF,z-C, F,sinF,z+C,
Boundary conditions :
v(0)=Vv'(0)=v(L)=Vv'(L)=0

-.C,+C, =0 ---v(0)=0
C, F+C,=0 ---v'(0)=0
CsinF,L+C,cosF,L+C,L+C, ---v(L)=0
C,F,cosFL-C,FsinFL+C, ---Vv(L)=0

0 1 0 1](c,

F 0 1 0]|c,

sin F,L cosFL L 1]]c,

| F,cosFL -F sinFL 1 0](C

N
L

o O O o

The \coefficient matrix\ =0
~.F, LsinFL-2cosF,L+2=0
F L

-

:.2sin FV2L [FVLCOS F;L +2sin

U x T 2 X
L

Smallest value of n=1:

2 2
7?El, #’El

(0.5L)

X

(KLY

\




Column Boundary Conditions

The critical buckling loads for columns with different boundary
conditions can be expressed as:

Where, K,, K, and K, are functions of the boundary conditions:
K=1 for simply supported boundary conditions
K=0.5 for fix-fix boundary conditions

K=0.7 for fix-simple boundary conditions



Column buckling — example.

Consider a wide flange column W27 x 84. The boundary conditions are:
v=v"=u=u=¢=¢’=0 at z=0, and v=v’=u=u"=¢=¢"=0 at z=L

For flexural buckling about the x-axis — simply supported — K,=1.0

For flexural buckling about the y-axis — fixed at both ends — K, = 0.5

For torsional buckling about the z-axis — pin-fix at two ends - K,=0.7

P_ﬂZElx_ﬂzEArxz_ 7’ E A

©(K, L)Y (K, LY _LKX LT

r

X

o _mEl, _rEAR’ 2 EA [ryjz

ECTRCEP

N (K L r2x (1 +1)
z rx



Column buckling — example.

. i_ 72_2 E A y 1 _ 7[2 E _ 5823066
P = 2 AO_ - 2 2
Y (Kx Lj Y O-Y [KX LJ (L)
I’X rx rX
Py 72'2 EA (ry/rx)2 72-2 E(ry/rx)2 791.02
-7 = 2)( = 2 = 2
R L Aoy L L
Kyrx GY Kyrx K
P 2
A LIWZJFG K, 2| — A W
R K L X(IX+Iy) Aoy
P
—¢: +G KT rX 2 1
P, L ><(Ix+ly)><0'Y
r -
P
¢ _ 7 +02333
v L
I




Column buckling — example.

Critical buckling load / yield load (P.,/Py)

1.8

1.6

1.4 4

1.2 4

0.8 1

0.6 | Torsional buckling a

Flexural buckling Flexural buckling
about y-axis about x-axis

Yield load P,
Cannot be exceede

Torsional buckling
about z-axis

0.4 1 |
| Fi | bkl'\bm\
i y-axIs governs R
O T T \I T T T T T T
0 10 20 30 40 50 60 70 80 90

L-r, (Slenderness Ratio)

= Px - flexural buckling Py - flexural buckling === Pz - torsional buckling

100



Column buckling — example.

When L is such that L/r, < 31; torsional buckling will govern

r, = 10.69 in. Therefore, L/r, = 31 - L=338 in.=28 ft.

Typical column length =10 — 15 ft. Therefore, typical L/r,=11.2 — 16.8
Therefore elastic torsional buckling will govern.

But, the predicted load is much greater than P,. Therefore, inelastic
buckling will govern.

Summary — Typically must calculate all three buckling load values to
determine which one governs. However, for common steel buildings
made using wide flange sections — the minor (y-axis) flexural buckling
usually governs.

In this problem, the torsional buckling governed because the end
conditions for minor axis flexural buckling were fixed. This is very
rarely achieved in common building construction.



Column Buckling — Singly Symmetric Columns

x

= Well, what if the column has only one axis of symmetry. Like the x-

axis or the y-axis or so.

As shown in this figure, the y — axis
IS the axis of symmetry.

The shear center S will be located
on this axis.

Therefore x,= 0.

The differential equations will
simplify to:

EILV'+Pv=0
El,u"+Pu+¢(Py,)=0

El, ¢"+(PT°-GK,)¢'+u' (Py,) =0




Column Buckling — Singly Symmetric Columns

= The first equation for flexural buckling about the x-axis (axis of
non-symmetry) becomes uncoupled.

EILLV'+Pv=0 --.-.. 1)
SEL VY +PV' =0

VY +FEZV' =0

where, F,* =

-.v=C;sinFz+C,cosF,z+C,z+C,
Boundary conditions

sinF,L=0
L 7T El
Y (K, L)

Buckling mod v=C,sinF,z

2

3

Equations (2) and (3) are still
coupled in terms of u and ¢.

El,u"+Pu+¢(Py,)=0
EI, ¢’"+(PT02—G K;)g'+u (Py,) =0

These equations will be satisfied by
the solutions of the form

u=C, sin (zz/L) and ¢=C; sin (zz/L)



Column Buckling — Singly Symmetric Columns
EL,u"+Pu+g(Py,)=0 oo (2)
ElL, "+ (PR -G K) ¢/ +U' (Py,) =0 (3)

CEL U HPU+¢"(Py,)=0
El, "+ (P -G K;)¢"+u" (P y,) =0

. Tl i
Let, u=C,sin—; =C,sln—
2 L ¢ 3 L

Therefore, substituting these in equations 2 and 3

4 2 2
T . Tl T . Tl T . Tl
El.|—| C,sih—-PC,| —| sin—-P — | C,sin—=0
Y\L) ° L Z(Lj L yO(Lj UL

4

=

W

2 2
C,sin2=—(PT2-G K )( j Cssin”—LZ—P Yo (%) Czsin%zzo

|




Column Buckling — Singly Symmetric Columns

2
| E |y(%) —P}CZ—P Y, C, =0

2
and{E %%) ~(PT2-GK,) }crp y, C, =0

7’ E | 2
Let,P, = ' and P =| T Elgk, |2

2 ¢ 2 —2
L L ro

.|P,-P]C,=Py,C,=0
[F=P JR'Cu—P v C; =0

._PY_P —PYo Cl_
”__PyO (P¢—P)F02}{C3}_{O}

|p,-P  -Py,




Column Buckling — Singly Symmetric Columns

(P, =P)(P,-P) 2 =P? y? =0
=[PP, —P(P,+P,)+P* |’ —P* y; =0

2
. D2 y _
L P2(1=25) - P(R, +R)+ PP, =0

0

2
(P, +P,) i\/(Py +P,)’ —4PyP¢(1—ng)
0

“P= :
2(1-25)
rO

i -

4P P, (1- X0

I

P+P)+ [(P,+P,)°|1- 0

(P, +F)+ |(P+F) (P +P)
“P= : :

2
21-20)
r0

o _ (P, +P)

y2
4P P, (1_Fg)

0

2
2(1- o)
r0

Thus, there are two ro
Smaller value will go

(P, +P)
P=p="21f" ¥
2(1-25
r0

li\l

2
(P, +P)

ots for P
vern

y2
4PP,A-22)
0

1-4/1- >
(P, +P)




Column Buckling — Singly Symmetric Columns

= The critical buckling load will the lowest of P, and the two roots
shown on the previous slide.

= If the flexural torsional buckling load govern, then the buckling
mode will be C, sin (zz/L) x C; sin (#z/L)

= This buckling mode will include both flexural and torsional
deformations — hence flexural-torsional buckling mode.



Column Buckling — Asymmetric Section

No axes of symmetry: Therefore, shear center S (X, Y,) IS such that
neither x, not y, are zero.

ELV+PV—g(PX)=0 i, 1)
ELLUu"+Pu+g(Py,)=0 ... (2)
El, ¢"+(PT7-GK.)g+Uu' (Py,)-V(PXx)=0 ...(3)

For simply supported boundary conditions: (u, u”, v, v’, ¢, ¢’=0), the
solutions to the differential equations can be assumed to be:

= U= C;sin (7z/L)

= V=0C,sin (nz/L)

s ¢=C;sin (7z/L)

These solutions will satisfy the boundary conditions noted above



i Column Buckling — Asymmetric Section

s Substitute the solutions into the d.e. and assume that it satisfied too:

e (e o) foon ()] s{esn( )

2
El, {—CZ % sin(%z)}+P{CZSin(”—sz}+P Yo {Cssm(”_l_zj}:o
3
. 7 B T T Via Tz T wZ
E |W {_CS E COS(T]}-'_(P rOZ —G KT) {Ca ECOS(T)}"‘ P yo {C]_ECOS(TJ}— P Xo {Cz ICOS(T)} = 0
2 _ _
(=Y e +p o —P X, C,sin| Z2
L 1 -
2 zZ 0
0 _(zj EI +P P Yo C2 Sin[ﬂ_j =19
L Y L 0
o P T 2 E | P—2 G K EC COS[ﬂ-_Zj
— P x, Yo _(tj w+ (P = r) L L]




Column Buckling — Asymmetric Section

Clsin[%zj

—P, +P o) —P X, . 0]

0 P, +P Py, Czsin[—j =40

P P (P, + P2 - 0
— X, Yo — ¢+®ro . (ﬂ_zj
—C,cos| —

where,

2 2 2
7T 7T 7o EI, 1
Px :[Ij EIX Py :[Ij Ely P¢ :[ L2 +G KTJr_O—Z

= Either C;, C,, C; =0 (no buckling), or the determinant of the coefficient
matrix =0 at buckling.

s Therefore, determinant of the coefficient matrix is:

(P—PX)(P—Py)(P—P¢)—P2(P—PX)[£]—PZ(P—Py)[f’Z}:0

I

0]




Column Buckling — Asymmetric Section

(P—PX)(P—PY)(P—P¢)—PZ(P—PX)(EZ]—PZ(P—PY)[ﬁi}_o

I I

0 0

This is the equation for predicting buckling of a column with an
asymmetric section.

The equation is cubic in P. Hence, it can be solved to obtain three
roots P, P.», P

crl» ' cr2» ' cr3-

The smallest of the three roots will govern the buckling of the column.
The critical buckling load will always be smaller than P,, P, and P,

The buckling mode will always include all three deformations u, v, and
¢. Hence, it will be a flexural-torsional buckling mode.

For boundary conditions other than simply-supported, the
corresponding P,, P,, and P, can be modified to include end condition
effects K,, K,, and K,



Homework No. 4

See word file
Problem No. 1

Consider a column with doubly symmetric cross-section. The boundary conditions
for flexural buckling are simply supported at one end and fixed at the other end.

Solve the differential equation for flexural buckling for these boundary conditions
and determine the eigenvalue (buckling load) and the eigenmode (buckling shape).
Plot the eigenmode.

How the eigenvalue compare with the effective length approach for predicting
buckling?

What is the relationship between the eigenmode and the effective length of the
column (Refer textbook).

Problem No. 2

Consider an A992 steel W14 x 68 column cross-section. Develop the normalized
buckling load (Pcr/PY) vs. slenderness ratio (L/rx) curves for the column cross-
section. Assume that the boundary conditions are simply supported for buckling
about the x, y, and z axes.

Which buckling mode dominates for different column lengths?
Is torsional buckling a possibility for practical columns of this length?
Will elastic buckling occur for most practical lengths of this column?

Problem No. 3

Consider a C10 x 30 column section. The length of the column is 15 ft. What is the
buckling capacity of the column if it is simply supported for buckling about the y-
axis (of non-symmetry), pin-fix for flexure about the x-axis (of symmetry) and
simply supported in torsion about the z-axis. Which buckling mode dominates?



!'_ Column Buckling - Inelastic

A long topic



Effects of geometric imperfection

EIv"+Pv =0 Leads to bifurcation buckling of
Elu"+Pu=0 perfect doubly-symmetric columns

M -Pv+v,)=0
LEIV'+P(v+v,)=0

V' F (v+v,)=0

V'+ Frv=—F

V' Flv==F*(5, sin %)
Solution =v_ +v,

v, =Asin(F z)+ Bcos(F,z)

v, = CSinE+DcosE
L L




Effects of Geometric Imperfection

Solve for C and D first

. 5 e . TZ
SV FYYy =—F°0 sin—
p v'p v 2o L

-
{Ej Csin’Z +Dcos E}+ sz[Csin "= +Dcos E}L F’5, sin % _0
L L L L L L

2 2
- sin = —C(fj + F’C+F>5, |+ cos = —(fj D+F’D|=0
Ll \z Ll \L

2 2
—c[%j +F’C+F’5, =0 and H%j D+ FfD} =0

FVZ 50

Lo,
)~
L

Solution becomes

SLC= and D=0

FZ
v=Asin(Fz)+ Bcos(Fz)+ 2 sin =2

2
ARG
L




Geometric Imperfection

Solve for A and B P
Boundary conditions v(0)=v(L)=0 L= PEP 8 sin =z
v(0)=B=0 1— o L
v(L)=AsinF L=0 ¢
.. Total Deflection
S A=0
.. Solution becomes r
P . Tz . Tz
F25 - =viv,=—5% O, Sin—+ 0, sin—
V= ——Ssin— 1-— L L
A PE
L ' [ p i
F’ P.
50, P = PEP +150Sin7zz— lp 50SinE
=t 2 sine =218 ginZ - E - £
1 Fv L 1— £ L . Tz
L

Ar = amplification factor



Geometric Imperfection

1

A, = —p = amplification factor
1—
PE
M. =Pv+v,)

M, =A,(Po,sin %)

e, M_= A, x (moment due to initial crooked)

12

Increases exponentially
] Limit A: for design
/ Limit P/Pg for design

8

° / Value used in the code is 0.877
N / This will give A- = 8.13
// Have to live with it.

0 0.2 0.4 0.6 0.8 1
P/P:




Residual Stress Effects

"
65 RESIDUAL STRESS

Mutisran congrrmive
sress, say 12 ks average

(53 MPa)

Comgeenion

1
P Tenon (+)
: "1.' v i
v/l’V
Figure 6.5.1  Typical ressdual stress pattern on rolled shapes. 3
[ = “

say 20 ksi (140 MPa)

. A‘ﬂﬂiﬂ'h\ )
_hy \Lﬂ_say 40 ksi

(280 MPa)

say 12 ksi (84 MPa)

say 35 ksi
(240 MPa)
tension

Welded H

sa '20 ksi
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Figure 6.5.3 Typical residual stress distribution in welded shapes.




Residual Stress Effects

r - -
e Compaon Cconlating
o) oovbhin] slrew
/ —
="
Matirram
als resadeal
N COTIgET N E | e
-
: e |
b a B : |
4 -m -
r
’}' Members auh L)
soumdaal sirces -_-
: )
e — . - Shuckod portion ndicatos
AVETARE CONMPOeasive dTmn ¢ arca which has sheved &
sirewn

Figure 6.5.2 Influonce of residual stress on average stress-siran curnve
[ 3 ab



History of column inelastic buckling

Euler developed column elastic buckling equations (buried in the
million other things he did).

= Take alook at: http://en.wikipedia.orag/wiki/EuleR
= An amazing mathematician

In the 1750s, | could not find the exact year.

The elastica problem of column buckling indicates elastic
buckling occurs with no increase in load.

= dP/dv=0

A

~ -
S~ - _——

v



http://en.wikipedia.org/wiki/EuleR

History of Column Inelastic Buckling

Engesser extended the elastic column buckling theory in 18809.

. . F A
He assumed that inelastic |P
buckling occurs with no e
Increase In load, and the - o 15
| w—— .
relation between stress

and strain is defined by

tangent modulus E, S
(a) (5 ©

Fig. 4.21. Engesser's concept of inelastic column buckling

Engesser’'s tangent modulus theory is easy to apply. It
compares reasonably with experimental results.

« P=nEl/ (KL)?



History of Column Inelastic Buckling

= In 1895, Jasinsky pointed out the problem with Engesser’s

theory.

« If dP/dv=0, then the 2"d order moment (Pv) will produce
Incremental strains that will vary linearly and have a zero value at

the centroid (neutral axis).

= The linear strain variation will have compressive and tensile
values. The tangent modulus for the incremental compressive
strain is equal to E, and that for the tensile strain is E.

L E,

3 r=£ curve

mf



History of Column Inelastic Buckling

= In 1898, Engesser corrected his original theory by accounting
for the different tangent modulus of the tensile increment.

= This is known as the reduced modulus or double modulus

= The assumptions are the same as before. That is, there is no
Increase in load as buckling occurs.

= The corrected theory is shown in the following slide



History of Column Inelastic Buckling

The buckling load Py produces critical

stress cRr=P,/A

During buckling, a small curvature d¢
IS Introduced

The strain distribution i1s shown.
The loaded side has dg; and do|

The unloaded side has dg; and doy,
de, =(y—y,+y)do

de; =(y—y+y)de
~do,=E(y-y+y)d¢
Ldoy=E(y-y+y)d¢

=

e ol hl_'n-ﬂ b |

]

= d
Fig. 4.22. The reduced modulus conce




History of Column Inelastic Buckling

g4
‘3d¢:—v" dA
doy =—=E,(y=—y+y)v" y
doy =—E(y=y+y) v’
But, the assumption is dP =0 ’ - J - e
-

ldo, da-"[do, da=0 “ ]

s —~(d-7)

o . L,
o JE(y=Y+y)dA- JyEt(y—y1+y)dA=0 |  da
y=» —(d-y) )

.. ES -ES, =0 |

b daj,
where, S = [(y—y+y,)dA | -

Y=y

= hI_-:,‘U )

L
-ﬁ-'f'—i‘ X

and S= [(F—y +y)dA . .

~(d-y)




History of Column Inelastic Buckling

= S, and S, are the statical moments of the areas to the left and
right of the neutral axis.

= Note that the neutral axis does not coincide with the centroid any
more.

= The location of the neutral axis is calculated using the equation

M = Py

Y. V=)
M= ldoy(y-y+y)dA- fdeL(?—yl +y) dA

Y=y —(d-y)

©.M=Pv=—"(EL+E L)

Y.
where, I, = [(y—y+y,)* dA

Y=y

V=)
and T= | (= +y)* dd

—(d-y)



History of Column Inelastic Buckling

M=Pv=—"(El+EIL)
SPv+(EL+EL)V'=0

4 P
v+ V=
ElL+E I,
V' Fv =0
where, F. = P = _P
ElL+EIL EI
— I 1
and E=E-L+E, =2
]x ]x
7Z_2E]x E is the reduced or double modulus

R~ (KL)2 Pk is the reduced modulus buckling load



History of Column Inelastic Buckling

= For 50 years, engineers were faced with the dilemma that the
reduced modulus theory is correct, but the experimental data
was closer to the tangent modulus theory. How to resolve?

= Shanley eventually resolved this dilemma in 1947. He
conducted very careful experiments on small aluminum
columns.

= He found that lateral deflection started very near the theoretical
tangent modulus load and the load capacity increased with
increasing lateral deflections.

= The column axial load capacity never reached the calculated
reduced or double modulus load.

= Shanley developed a column model to explain the observed
phenomenon



History of Column Inelastic Buckling

i

Rigid bar

rafe-

e
ol

286y . - d
e
s |
eformable celi _'—?

R““--Higid bar

majr~

S

Fig. 4.23. Shanley's column model




History of Column Inelastic Buckling

v=%0 and 6, =L +e) (4.129)
3y combining these two equations we can eliminate ,, and thus
Yo = 3‘%{31 + &) (4.130)
The external moment at the midheight of the column is
M, =Po, =256, + e) (4.131)
The forces in the two flanges due to buckling are
P, = E%*i and P, = Eﬁ‘“ (4.132)
The internal moment is then
M, = %5 + ""-_%’l* = L (Bt + Epey) (4.133)
With M, = M, we get an expression for the axial load P, or
P (BeEen) 134




History of Column Inelastic Buckling

In case the cell is elastic E, = E, = E, and so

Py = 5 (4.135)
For the tangent modulus concept E, = E, = E,, and so
e =278 4.136)

When we consider the elastic unloading of the “tension” flange, then
E, = E, and E, = E, and thus

__Ad{E,e, + Ee

Upon substitution of e, from Eq. (4.130) and Py from Eq. (4.136) and using
the abbreviation

r=2 (4.138)
we find that
P=P,.[1 +4£:U;iu(%— 1)] (4.139)




History of Column Inelastic Buckling

_ 1
P =P |1+ Gy F i) (4.143)
-PJ'I:=P1'(1 + i jr:) (4.146)
Pﬁ 1.5

P=1333 R aty/h=o00

-‘:rkf.-

Fig. 4.24. Post-buckling behavior in the inelastic range
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Column Inelastic Buckling

= Three different theories L P
= Tangent modulus

= Reduced modulus \/
RN

= Shanley model
dP/dv=0

= Tangent modulus theory
assumes

= Perfectly straight column Slope is zero at buckling
: AP=0 with increasing 4v
= Ends are pinned

= Small deformations
= No strain reversal during Elastic buckling analysis

buckling /\
Pr

A

>V

v




Tangent modulus theory

= Assumes that the column buckles at the tangent modulus load such
that there is an increase in AP (axial force) and AM (moment).

= The axial strain increases everywhere and there is no strain reversal.

P Strain and stress state just before buckling
T
/]
/]
. er o=P;/A
VVVYVYVYVYY VVVYYVYYVYYVYY
Strain and stress state just after buckling
M,-Pv=0
€ c
/V vy YVYYVYY T vy YVYYVYY T
¥ Y vy | Agr Y vy | Ao=E;Ae;

Curvature = ¢ = slope of strain diagram

Ag, = §+ yj where y = dis tan ce from centroid

Ao, :¢§(§+yJOET




Tangent modulus theory

= Deriving the equation of equilibrium

= The equation M- P;v=0 becomes -E-l.v" - P;v=0
= Solution is P;= 72E;l /L2



Example - Aluminum columns

= Consider an aluminum column with Ramberg-Osgood stress-
strain curve

e=2 4 o.ooz(ﬂj
E

Oy
ce 1 0002
C—=— no
do E oy,
1+ 0.002 nEc""
. OE _ Ty5
" do E
n—1
[, 0002 EEGj
20 Oy Oy
oo E
oo E




Tangent Modulus Buckling
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Ramberg-Osgood Stress-Strail
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Tangent Modulus Buckling

Column Inelastic Buckling Curve

60

50 A

40 -

30

20 -

2
nw E I
P, = —LZT

30

60

KL/r

120 150

OT (KL/r)cr

0

2 223.252104
4 157.863077
6 128.894662]
8 111.626052]
10 99.8413764
12 91.1422894
14 84.3813604
16 78.9315027]
18 74.4171015]
20 70.596906794
22 67.3048791
24 64.411369]
26 61.77857434
28 59.1743095]
30 56.09208284
32 51.5097656
34 44.14566411
36 34.1419684
38 24.0046401]
40 15.996120]1
42 10.48827471
44 6.902516144
46 4.59663340
48 3.10544036
50 2.129145204




Residual Stress Effects

Consider a rectangular section X
with a simple residual stress )
distribution

Assume that the steel material
has elastic-plastic stress-strain
c—¢ Curve.

Assume simply supported end
conditions

Assume triangular distribution
for residual stresses

v




Residual Stress Effects

= One major constrain on residual
stresses is that they must be such
that

-~

2 b/2 2
g j) [—0.56y+ Zy xjdxa’x+ f[—kO.Say— Z-y xjdxdx
0

-b/2

2de (p?) 2do. (B2
—0.50.db/2+0.50 db/2+ 2 (b J— O (b j
‘ ‘ b \8) b |8

=0

= Residual stresses are produced by
uneven cooling but no load is
present

>



Residual Stress Effects

|l

v

= Response will be such that -
elastic behavior when

A

c<0.50,
2El n’El
P = i — and P,=——+ |y
L ’ L D — ab } ab >le—>]
Yielding occurs when 7
g ces v 7
c=0.50, ie, P=0.5F /
| o % 7
Inelastic buckling will occur after o>0.50, y




Residual Stress Effects

Total axial force corresponding to the yielded sec tion

ay(b—2ab)d+(o-y i O-Y(l_za)jabdx 2
2

=o,(1-2a)bd + o, (2-2a)abd
=o,bd—-2abdo, +20,abd - 2a°bdo,
=o,bd(1-2a°)=P,(1-2a°)

- Af inelastic buckling were to occur at this load
P =P,(1-2a’)

1 P
o= = 1-—
2 P,



2 d3
P =P = (2ab)—
2
T EIX
P 2 200
P =P x2x_|— 1—i
PY

W




If inelastic buckling occurs about y — axis

2
/) 5 d
P, =P, = FE (2ab) I
2
n°El 3
P = 7 *(2a)

|

~
X

[\
T
|5°
<

[l

~

NN

W




Residual Stress Effects

P/Py Ax Ay

0.200 2.236 2.236
0.250 2.000 2.000
0.300 1.826 1.826
0.350 1.690 1.690
0.400 1.581 1.581
0.450 1.491 1.491
0.500 1.414 1.414
0.550 1.313 1.246
0.600 1.221 1.092
0.650 1.135 0.949
0.700 1.052 0.815
0.750 0.971 0.687
0.800 0.889 0.562
0.850 0.803 0.440
0.900 0.705 0.315
0.950 0.577 0.182
0.995 0.317 0.032

Normalized column capacity
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-
o
o
o
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Column Inelastic Buckling
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Tangent modulus buckling - Numerical

Discretize the cross-section into fibers

1 ‘ Think about the discretization. Do you need the flange ’

To be discretized along the length and width?

A

Yiib v

For each fiber, save the area of fiber (A;), the
distances from the centroid yg, and Xg,,
lyfip @nd 1y, the fiber number in the matrix.

Centroidal axis

A 4

Discretize residual stress distribution’

A 4

°
°
°
°
°
°
°

IS
o

~

Calculate residual stress (o4

each fiber

A 4

Check that sum(o; 4, Agip,)for
Section = zero




Tangent Modulus Buckling - Numerical

Calculate effective residual
strain (&) for each fiber
&=alE

A 4

Assume centroidal strain
&

Calculate total strain for each fiber
Got—€t &

A 4

Assume a material stress-strain
curve for each fiber

14 Calculate the critical (KL)y and (KL), for the &

(KL)x.or = 7 sqrt [(ED)1,/P]
(KL)y-cr = ﬂsqrt [(EI)Ty/P]

A

Calculate the tangent (El);yx and (El);y for the o

13

(ENrx = SUM(Ex.in{Yiin? Afin+lx-fin))
(EN1y = SUM(Ergip{Xsin® Afint ly-in})

A

Calculate average stress = o= P/A

T

Calculate Axial Force = P
Sum (opAsip)

T

v

Calculate stress in each fiber oy,

12

11

10



Tangent modulus buckling - numerical

Section Dimension

b 12 fiber no| Asp Xfib Yfib Or-fib Er-fib DX Lysp
d 4 1 2.4 -5.7 0 -22.5 -7.759E-04 3.2 78.05
oy 50 2 2.4 -5.1 0 -17.5 -6.034E-04 3.2 62.50
3 2.4 -4.5 0 -12.5 -4.310E-04 3.2 48.67
No. of fibers 20 4 2.4 -3.9 0 -7.5 -2.586E-04 3.2 36.58
5 2.4 -3.3 0 -2.5 -8.621E-05 3.2 26.21
6 2.4 -2.7 0 2.5 8.621E-05 3.2 17.57
A 48 7 2.4 -2.1 0 7.5 2.586E-04 3.2 10.66
Ix 64 8 2.4 -1.5 0 12.5 4.310E-04 3.2 5.47
Iy 576.00 9 2.4 -0.9 0 17.5 6.034E-04 3.2 2.02
10 2.4 -0.3 0 22.5 7.759E-04 3.2 0.29
11 2.4 0.3 0 22.5 7.759E-04 3.2 0.29
12 2.4 0.9 0 17.5 6.034E-04 3.2 2.02
13 2.4 1.5 0 12.5 4.310E-04 3.2 5.47
14 2.4 2.1 0 7.5 2.586E-04 3.2 10.66
15 2.4 2.7 0 2.5 8.621E-05 3.2 17.57
16 2.4 3.3 0 -2.5 -8.621E-05 3.2 26.21
17 2.4 3.9 0 -7.5 -2.586E-04 3.2 36.58
18 2.4 4.5 0 -12.5 -4.310E-04 3.2 48.67
19 2.4 5.1 0 -17.5 -6.034E-04 3.2 62.50
20 2.4 5.7 0 -22.5 -7.759E-04 3.2 78.05




Tangent Modulus Buckling - numerical

Strain Increment

Ag Fiber no. |ewt Ofib Esp Elryip El 1y Prip
-0.0003 1 -1.076E-03 -31.2[ 29000 92800 2.26E+06 -74.88
2 -9.034E-04 -26.2[ 29000 92800 1.81E+06 -62.88
3 -7.310E-04 -21.2] 290000 92800 1.41E+06 -50.88
4 -5.586E-04 -16.2] 290000 92800 1.06E+06 -38.88
5 -3.862E-04 -11.2] 290000 92800 7.60E+05 -26.88
6 -2.138E-04 -6.2| 290000 92800 5.09E+05 -14.88
7 -4,138E-085 -1.2] 290000 92800 3.09E+05 -2.88
8 1.310E-04 3.8] 290000 92800 1.59E+05 9.12
9 3.034E-04 8.8| 29000, 92800 5.85E+04 21.12
10 4.759E-04 13.8| 290000 92800 8.35E+03 33.12
11 4.759E-04 13.8| 29000 92800 8.35E+03 33.12
12 3.034E-04 8.8| 29000, 92800 5.85E+04 21.12
13 1.310E-04 3.8] 290000 92800 1.59E+05 9.12
14 -4.138E-085 -1.2] 290000 92800 3.09E+05 -2.88
15 -2.138E-04 -6.2| 290000 92800 5.09E+05 -14.88
16 -3.862E-04 -11.2[ 29000 92800, 7.60E+05 -26.88
17 -5.586E-04 -16.2[ 29000 92800, 1.06E+06] -38.88
18 -7.310E-04 -21.2[ 29000 92800 1.41E+06] -50.88
19 -9.034E-04 -26.2[ 29000 92800, 1.81E+06] -62.88
20 -1.076E-03 -31.2[ 29000 92800 2.26E+06] -74.88




Tangent Modulus Buckling - Numerical

Ag Ely, ElL, KL, o KLy o1/Gy (KL/r), (KL/r),

—0.0003 -417.6 1856000 16704000]  209.4395102 628.3185301% 0.174] 181.3799364 181.379936¢

—0.0004 -556.8 1856000 16704000]  181.3799364 544.13980943 0.232] 157.0796327 157.079632]
-0.0005 -696 1856000 16704000 162.231147% 486.6934411 0.29] 140.4962946 140.496294
-0.00086 -835.2 1856000 16704000 148.0960979 444.2882938 0.348 128.254983 128.25498
-0.0007 -974.4 1856000 16704000 137.1103442 411.3310325 0.406] 118.7410412 118.741041]
-0.0008§ -1113.6 1856000 16704000 128.254983 384.764949 0.464] 111.0720735111.072073"
-0.0009 -1252.§ 1856000 16704000 120.9199576 362.7598728 0.522] 104.7197551 104.719755]

-0.001 -1384.8 1670400 12177214 109.11051 294.5983771 0.577| 94.49247352 85.0432261]
-0.0011 -1510.08 1670400 12177216 104.486488%9 282.1135199 0.6292 90.48795371 81.43915834
-0.0012 -1624.32 1484800 8552444 94.9834754% 227.960341 0.6768 82.2581026% 65.8064821]
-0.0013 -1734.72 1299200 5729472 85.97519828 180.5479163 0.7228 74.45670576 52.1196940]
-0.0014 -1832.16 1299200 5729472 83.6577500] 175.681275% 0.7634 72.44973673 50.7148157]
-0.0015 -1924.§ 1113600 3608064 75.56517263 136.0173107F 0.802] 65.44135914 39.2648154¢
-0.0016 -2008.372 1113600 3608064 73.97722346 133.1590022 0.8368 64.06615482 38.4396928
-0.0017 -2083.2 928000 2088000 66.30684706 99.46027059 0.868 57.423414 28.711707
-0.0018§ -2152.§ 928000 208800d 65.22619108 97.83928663 0.897| 56.48753847 28.2437692/
-0.0019 -2209.92 742400 1069056 57.58118233 69.0974188 0.9208 49.86676668 19.9467066]

-0.002 -2263.2 556800 451008 49.2762918% 44.34866267 0.943 42.6745205% 12.8023561¢
-0.0021 -2304.96 556800 451008 48.8278711 43.94508399 0.9604 42.28617679 12.68585304
-0.0022 -2340.48 371200 133632 39.56410897 23.73846538 0.9752 34.26352344 6.85270468§
-0.0023 -2368.372 371200 133632 39.3308801%5 23.59852809 0.9868 34.06154136 6.81230827]
-0.0024 -2386.08 185600 16704 27.7074372%8.312231176 0.9942 23.99534453 2.39953445]
-0.00249  -2398.604 185600 16704 27.63498414 8.290495243 0.99942 23.9325983 2.39325987




Tangent Modulus Buckling - Numerical
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Figure 6,7.2

Comparison of AISC
equations for F, for columns
with data from physical tests.
(Test data from Hall [6.24]))
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ELASTIC BUCKLING OF BEAMS

= Going back to the original three second-order differential

equations:
7
P
Ry My,
e "/ Therefore,
\\er " yA 7
T_ Ry/] o lELV +Pv—¢(PxO+MBY—I(MTY+MBY)j:MBX—I(MTX+MBX)

" Z Z
2[E1, U +Pu—¢(—P Y, + My, _E(MTX"LMBX)]:_MBY +E(MIY+MBY)'

" Va ] ' yA
L s|E 1, ¢ -G KT+K)¢+U (_MBX_E(MBX+MTX)+PyO)

, Z Vv u
-V (MBY +E(MBY +MTY)+P XO)_E(MTY +MBY)_I(MTX +MBX):O




ELASTIC BUCKLING OF BEAMS

Consider the case of a beam subjected to uniaxial bending only:
= because most steel structures have beams in uniaxial bending
= Beams under biaxial bending do not undergo elastic buckling

The three equations simplify to:

(-9)

Equation (1) is an uncoupled differential equation describing in-
plane bending behavior caused by M,y and Mgy



ELASTIC BUCKLING OF BEAMS

= Equations (2) and (3) are coupled equations in u and ¢ — that
describe the lateral bending and torsional behavior of the beam.
In fact they define the lateral torsional buckling of the beam.

= The beam must satisfy all three equations (1, 2, and 3). Hence,
beam in-plane bending will occur UNTIL the lateral torsional
buckling moment is reached, when it will take over.

= Consider the case of uniform moment (M) causing compression
In the top flange. This will mean that

= -Mpx =M= M, =

\/ - \
/\ g

/
\



ELASTIC BUCKLING OF BEAMS

= For this case, the differential equations (2 and 3) will become:
El,uU"+¢M =0
El,¢"-(GK;+K)¢' +u'(M,)=0

where :
K =Wagner 's effect due to warping caused by torsion

K:IGaZdA
A

But,o = I\I/IO y = neglecting higher order terms

X

M
I

-y [ (%, = %)% +(y, —¥)* | dA

A
Il
—

A X
K= I\I/I° fy:x§+x2—2xx0+y§+y2—2W0}dA
X A
R =M {xﬁjy +Iy[x2+y2]dA—x0_[2xy +y§jy d 2yojy2dA}
IX /K A A/LA A / A




ELASTIC BUCKLING OF BEAMS

jy[xz + yz]dA
~K=M_,_, = where, g =2 -2y,

[, 1s a new sectional property

The beam buckling differential equations become:
(2) EI,LuU"+¢pM, =0

3 El,¢"-(GK +M,B)¢ +u (M,)=0




ELASTIC BUCKLING OF BEAMS

M
E |

Substituting u” from Equation (2) in (3) gives:

2
MS” 5
El,

For doubly symmetric section: g, =0
A\ G M02
v 2

E EZ L1,
G K, M. *

and A, =——"
E | *E L,

w

@V~ ¢"—2,6=0 = becomes the combined d.e.of LTB

Equation (2) gives u" =—

— ¢

El, ¢" - (GK+M,B)¢"-

PI<T ¢rr_ ¢=O

w

Let, 4, =




ELASTIC BUCKLING OF BEAMS

Assume solution is of the form ¢ =e*
(At =4 AP =2, )et =0
A A=A AP =2, =0

.../12:}1+«/112+42,2 N AL, A

2 2
2 2
...i:i\/zﬁ«/zl +a T+ A2+ 44,
2 2
s Let, A=t , and *ia,

Above are the four roots for A

L p=Ce " +Ce ™ +C,e? +C,e7

.. collecting real and imaginary terms

. ¢ =G, cosh(e,z) + G, sinh(e,z) + G, sin(e,z) + G, cos(, )



ELASTIC BUCKLING OF BEAMS

= Assume simply supported boundary conditions for the beam:
- 9(0)=9¢"(0)=¢(L)=¢"(L)=0

Solution for ¢ must satisfy all four b.c.

1 0 0 1 (G,
ol 0 0 —at) » G, l_o
cosh(e,L) sinh(e, L) sin(a,L) cos(a,L) G,
|/ cosh(el)  af sinh(egl)  —a;sin(a,L) —a; cos(e,L) | (Gs)

For buckling coefficient matrix must be sin gular :
.. deter min ant of matrix=0

».(af +a3 )xsinh(a L) xsinf(a,L) =0

Of these:

only sinli(a,L) =0

sa,L=nx




i ELASTIC BUCKLING OF BEAMS
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