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STABILITY DEFINITION 

 Change in geometry of a structure or structural component 

under compression – resulting in loss of ability to resist loading 

is defined as instability in the book. 

 Instability can lead to catastrophic failure  must be accounted 

in design. Instability is a strength-related limit state. 

 Why did we define instability instead of stability? Seem strange! 

 Stability is not easy to define.  

 Every structure is in equilibrium – static or dynamic. If it is not in 

equilibrium, the body will be in motion or a mechanism. 

 A mechanism cannot resist loads and is of no use to the civil 

engineer.   

 Stability qualifies the state of equilibrium of a structure. Whether it 

is in stable or unstable equilibrium.  

 



STABILITY DEFINITION 

 Structure is in stable equilibrium when small perturbations do 

not cause large movements like a mechanism. Structure 

vibrates about it equilibrium position. 

 Structure is in unstable equilibrium when small perturbations 

produce large movements – and the structure never returns to 

its original equilibrium position. 

 Structure is in neutral equilibrium when we cant decide whether 

it is in stable or unstable equilibrium. Small perturbation cause 

large movements – but the structure can be brought back to its 

original equilibrium position with no work.  

 Thus, stability talks about the equilibrium state of the structure.  

 The definition of stability had nothing to do with a change in the 

geometry of the structure under compression – seems strange! 

 



STABILITY DEFINITION 

 



BUCKLING Vs. STABILITY 

 Change in geometry of structure under compression – that 

results in its ability to resist loads – called instability. 

 Not true – this is called buckling. 

 Buckling  is a phenomenon that can occur for structures under 

compressive loads.  

 The structure deforms and is in stable equilibrium in state-1.  

 As the load increases, the structure suddenly changes to 

deformation state-2 at some critical load Pcr.  

 The structure buckles from state-1 to state-2, where state-2 is 

orthogonal (has nothing to do, or independent) with state-1.  

 What has buckling to do with stability?  

 The question is - Is the equilibrium in state-2 stable or unstable?  

 Usually, state-2 after buckling is either neutral or unstable 

equilibrium 



BUCKLING 

P=Pcr 

P 

P<Pcr 

P P 

d 

P>Pcr 

P 

d 



BUCKLING Vs. STABILITY 

 Thus, there are two topics we will be interested in  this course 

 Buckling – Sudden change in deformation from state-1 to state-2 

 Stability of equilibrium – As the loads acting on the structure are 

increased, when does the equilibrium state become unstable? 

 The equilibrium state becomes unstable due to:  

 Large deformations of the structure 

 Inelasticity of the structural materials 

 We will look at both of these topics for  

 Columns 

 Beams 

 Beam-Columns 

 Structural Frames 

 



TYPES OF INSTABILITY 

Structure subjected to compressive forces can undergo: 

1. Buckling – bifurcation of equilibrium from deformation state-1 to 

state-2. 

 Bifurcation buckling occurs for columns, beams, and symmetric 

frames under gravity loads only 

2. Failure due to instability of equilibrium state-1 due to large 

deformations or material inelasticity 

 Elastic instability occurs for beam-columns, and frames subjected 

to gravity and lateral loads.  

 Inelastic instability can occur for all members and the frame. 

 We will study all of this in this course because we don’t want 

our designed structure to buckle or fail by instability – both of 

which are strength limit states.  

 



TYPES OF INSTABILITY 

BIFURCATION BUCKLING 

 Member or structure subjected to loads. As the load is 

increased, it reaches a critical value where: 

 The deformation changes suddenly from state-1 to state-2. 

 And, the equilibrium load-deformation path bifurcates.  

 Critical buckling load when the load-deformation path bifurcates 

 Primary load-deformation path before buckling 

 Secondary load-deformation path post buckling 

 Is the post-buckling path stable or unstable? 

 

 



SYMMETRIC BIFURCATION 

 Post-buckling load-deform. paths are symmetric about load axis.  

 If the load capacity increases after buckling then stable symmetric 

bifurcation. 

 If the load capacity decreases after buckling then unstable 

symmetric bifurcation.  



ASYMMETRIC BIFURCATION 

 Post-buckling behavior that is asymmetric about load axis.  



INSTABILITY FAILURE 

 There is no bifurcation of the load-deformation path. The 

deformation stays in state-1 throughout 

 The structure stiffness decreases as the loads are increased. 

The change is stiffness is due to large deformations and / or 

material inelasticity. 

 The structure stiffness decreases to zero and becomes negative.  

 The load capacity is reached when the stiffness becomes zero. 

 Neutral equilibrium when stiffness becomes zero and unstable 

equilibrium when stiffness is negative.  

 Structural stability failure – when stiffness becomes negative. 



INSTABILITY FAILURE 

 FAILURE OF BEAM-COLUMNS 
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and geometric nonlinearity 



INSTABILITY FAILURE 

 Snap-through buckling 
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INSTABILITY FAILURE 

 Shell Buckling failure – very sensitive to imperfections 
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METHODS OF STABILITY ANALYSES 

 Bifurcation approach – consists of writing the equation of 

equilibrium and solving it to determine the onset of buckling. 

 Energy approach – consists of writing the equation expressing 

the complete potential energy of the system. Analyzing this total 

potential energy to establish equilibrium and examine stability of 

the equilibrium state.  

 Dynamic approach – consists of writing the equation of dynamic 

equilibrium of the system. Solving the equation to determine the 

natural frequency (w) of the system. Instability corresponds to 

the reduction of w to zero.   



STABILITY ANALYSES 

 Each method has its advantages and disadvantages. In fact, 
you can use different methods to answer different questions 

 The bifurcation approach is appropriate for determining the 
critical buckling load for a (perfect) system subjected to loads.  

 The deformations are usually assumed to be small. 

 The system must not have any imperfections.  

 It cannot provide any information regarding the post-buckling load-
deformation path.  

 The energy approach is the best when establishing the 
equilibrium equation and examining its stability 

 The deformations can be small or large. 

 The system can have imperfections. 

 It provides information regarding the post-buckling path if large 
deformations are assumed 

 The major limitation is that it requires the assumption of the 
deformation state, and it should include all possible degrees of 
freedom.  



STABILITY ANALYSIS 

 The dynamic method is very powerful, but we will not use it in this class 
at all.  

 Remember, it though when you take the course in dynamics or earthquake 
engineering 

 In this class, you will learn that the loads acting on a structure change its 
stiffness. This is significant – you have not seen it before.  

 

 

 

 

 

 What happens when an axial load is acting on the beam.  

 The stiffness will no longer remain 4EI/L and 2EI/L.  

 Instead, it will decrease. The reduced stiffness will reduce the 
natural frequency and period elongation.  

 You will see these in your dynamics and earthquake engineering 
class.  
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STABILITY ANALYSIS 

 FOR ANY KIND OF BUCKLING OR STABILITY ANALYSIS –  

NEED TO DRAW THE FREE BODY DIAGRAM OF THE DEFORMED 

STRUCTURE. 

 WRITE THE EQUATION OF STATIC EQUILIBRIUM IN THE 

DEFORMED STATE 

 WRITE THE ENERGY EQUATION IN THE DEFORMED STATE 

TOO. 

 THIS IS CENTRAL TO THE TOPIC OF STABILITY ANALYSIS 

 NO STABILITY ANALYSIS CAN BE PERFORMED IF THE FREE 

BODY DIAGRAM IS IN THE UNDEFORMED STATE 



BIFURCATION ANALYSIS 

 Always a small deflection analysis  

 To determine Pcr buckling load 

 Need to assume buckled shape (state 2) to calculate 

Example 1 – Rigid bar supported by rotational spring 

 

 

 

Step 1 - Assume a deformed shape that activates all possible d.o.f. 

 

Rigid bar subjected to axial force P 

Rotationally restrained at end 

P k 

L 

q 

L P 

L cosq 
L (1-cosq) 

kq 



BIFURCATION ANALYSIS 

 

 

 

 Write the equation of static equilibrium in the deformed state 

 

 

 

 
 

 Thus, the structure will be in static equilibrium in the deformed state 

when P = Pcr = k/L 

 When P<Pcr, the structure will not be in the deformed state. The 

structure will buckle into the deformed state when P=Pcr 
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BIFURCATION ANALYSIS 
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Example 2 - Rigid bar supported by translational spring at end 

Assume deformed state that activates all possible d.o.f. 

Draw FBD in the deformed state  



 BIFURCATION ANALYSIS 

Write equations of static equilibrium in deformed state 
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• Thus, the structure will be in static equilibrium in the deformed state 

   when P = Pcr = k L.  When P<Pcr, the structure will not be in the deformed    

   state. The structure will buckle into the deformed state when P=Pcr 



BIFURCATION ANALYSIS 

Example 3 – Three rigid bar system with two rotational springs 
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Assume deformed state that activates all possible d.o.f. 

Draw FBD in the deformed state  
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BIFURCATION ANALYSIS 

Write equations of static equilibrium in deformed state 
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BIFURCATION ANALYSIS 

 Equations of Static Equilibrium 

 

 

 Therefore either q1 and q2 are equal to zero or the determinant of the 

coefficient matrix is equal to zero.  

 When q1 and q2 are not equal to zero – that is when buckling occurs – 

the coefficient matrix determinant has to be equal to zero for equil. 

 Take a look at the matrix equation. It is of the form [A] {x}={0}. It can 

also be rewritten as ([K]-l[I]){x}={0} 
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BIFURCATION ANALYSIS 

 This is the classical eigenvalue problem. ([K]-l[I]){x}={0}.  

 We are searching for the eigenvalues (l) of the stiffness matrix [K]. 

These eigenvalues cause the stiffness matrix to become singular 

 Singular stiffness matrix means that it has a zero value, which means that 

the determinant of the matrix is equal to zero.  

 

 

 

 

 

 

 

 

 

 

 Smallest value of Pcr will govern. Therefore, Pcr=k/L 
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BIFURCATION ANALYSIS 

 Each eigenvalue or critical buckling load (Pcr) corresponds to a buckling shape 

that can be determined as follows 

 Pcr=k/L. Therefore substitute in the equations to determine q1 and q2 

 

 

 

 

 

 

 

 All we could find is the relationship between q1 and q2. Not their specific 

values. Remember that this is a small deflection analysis. So, the values are 

negligible. What we have found is the buckling shape – not its magnitude. 

 The buckling mode is such that q1=q2  Symmetric buckling mode 
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BIFURCATION ANALYSIS 

 Second eigenvalue was Pcr=3k/L. Therefore substitute in the equations to 

determine q1 and q2 

 

 

 

 

 

 

 

 All we could find is the relationship between q1 and q2. Not their specific 

values. Remember that this is a small deflection analysis. So, the values are 

negligible. What we have found is the buckling shape – not its magnitude. 

 The buckling mode is such that q1=-q2  Antisymmetric buckling mode 
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BIFURCATION ANALYSIS 

 Homework No. 1 

 Problem 1.1 

 Problem 1.3 

 Problem 1.4 

 All problems from the textbook on Stability by W.F. Chen 
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ENERGY METHOD 

 We will currently look at the use of the energy method for an 

elastic system subjected to conservative forces. 

 Total potential energy of the system – P – depends on the work 

done by the external forces (We) and the strain energy stored in 

the system (U).  

 P = U - We.   

 For the system to be in equilibrium, its total potential energy P 

must be stationary. That is, the first derivative of P must be 

equal to zero. 

 Investigate higher order derivatives of the total potential energy 

to examine the stability of the equilibrium state, i.e., whether the 

equilibrium is stable or unstable 



ENERGY METHD 

 The energy method is the best for establishing the equilibrium 

equation and examining its stability 

 The deformations can be small or large. 

 The system can have imperfections. 

 It provides information regarding the post-buckling path if large 

deformations are assumed 

 The major limitation is that it requires the assumption of the 

deformation state, and it should include all possible degrees of 

freedom.  



ENERGY METHOD 

 Example 1 – Rigid bar supported by rotational spring 

 Assume small deflection theory 

 

 

 

Step 1 - Assume a deformed shape that activates all possible d.o.f. 

 

Rigid bar subjected to axial force P 

Rotationally restrained at end 
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ENERGY METHOD – SMALL DEFLECTIONS 

 

 
 

 Write the equation representing the total potential energy of system 
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ENERGY METHOD – SMALL DEFLECTIONS 

 The energy method predicts that buckling will occur at the same load 

Pcr as the bifurcation analysis method. 

 At Pcr, the system will be in equilibrium in the deformed.  

 Examine the stability by considering further derivatives of the total 

potential energy 

 This is a small deflection analysis. Hence q will be  zero.  

 In this type of analysis, the further derivatives of P examine the stability of 

the initial state-1 (when q =0) 
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ENERGY METHOD – SMALL DEFLECTIONS 

 In state-1, stable when P<Pcr, unstable when P>Pcr 

 No idea about state during buckling.  

 No idea about post-buckling equilibrium path or its stability.  
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ENERGY METHOD – LARGE DEFLECTIONS 

 Example 1 – Large deflection analysis (rigid bar with rotational spring) 
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ENERGY METHOD – LARGE DEFLECTIONS 

 Large deflection analysis 

 See the post-buckling load-displacement path shown below 

 The load carrying capacity increases after buckling at Pcr 

 Pcr is where q  0 
Rigid bar with rotational spring
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ENERGY METHOD – LARGE DEFLECTIONS 

 Large deflection analysis – Examine the stability of equilibrium using 

higher order derivatives of P 
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ENERGY METHOD – LARGE DEFLECTIONS 

 At q =0, the second derivative of P=0. Therefore, inconclusive. 

 Consider the Taylor series expansion of P at q=0 

 

 

 Determine the first non-zero term of P,  

 

 

 

 

 

 

 Since the first non-zero term is > 0, the state is stable at P=Pcr and q=0 
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Rigid bar with rotational spring
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ENERGY METHOD – IMPERFECT SYSTEMS 

 Consider example 1 – but as a system with imperfections 

 The initial imperfection given by the angle q0 as shown below 

 

 

 

 

 The free body diagram of the deformed system is shown below 
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ENERGY METHODS – IMPERFECT SYSTEMS 

 As shown in the figure, deflection starts as soon as loads are 

applied. There is no bifurcation of load-deformation path for 

imperfect systems. The load-deformation path remains in the 

same state through-out.  

 The smaller the imperfection magnitude, the close the load-

deformation paths to the perfect system load –deformation path 

 The magnitude of load, is influenced significantly by the 

imperfection magnitude. 

 All real systems have imperfections. They may be very small but 

will be there 

 The magnitude of imperfection is not easy to know or guess. 

Hence if a perfect system analysis is done, the results will be 

close for an imperfect system with small imperfections 



ENERGY METHODS – IMPERFECT SYSTEMS 

 Examine the stability of the imperfect system using higher order 

derivatives of P 

 

 

 

 

 

 

 

 

 Which is always true, hence always in STABLE EQUILIBRIUM 
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ENERGY METHOD – SMALL DEFLECTIONS 

P 

k 

L 

P 
L 

q 

L (1-cosq) 

L cosq 

L sinq 

k L sinq 
O 

Example 2 - Rigid bar supported by translational spring at end 

Assume deformed state that activates all possible d.o.f. 

Draw FBD in the deformed state  



 ENERGY METHOD – SMALL DEFLECTIONS 

Write the equation representing the total potential energy of system 
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ENERGY METHOD – SMALL DEFLECTIONS 

 The energy method predicts that buckling will occur at the same 

load Pcr as the bifurcation analysis method. 

 At Pcr, the system will be in equilibrium in the deformed. 

Examine the stability by considering further derivatives of the 

total potential energy 

 This is a small deflection analysis. Hence q will be  zero.  

 In this type of analysis, the further derivatives of P examine the 

stability of the initial state-1 (when q =0) 
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ENERGY METHOD – LARGE DEFLECTIONS 
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ENERGY METHOD – LARGE DEFLECTIONS 

 Large deflection analysis 

 See the post-buckling load-displacement path shown below 

 The load carrying capacity decreases after buckling at Pcr 

 Pcr is where q  0 
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ENERGY METHOD – LARGE DEFLECTIONS 

 Large deflection analysis – Examine the stability of equilibrium using 

higher order derivatives of P 
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ENERGY METHOD – LARGE DEFLECTIONS 

 At q =0, the second derivative of P=0. Therefore, inconclusive. 

 Consider the Taylor series expansion of P at q=0 

 

 

 Determine the first non-zero term of P,  

 

 

 

 

 

 

 Since the first non-zero term is < 0, the state is unstable at P=Pcr and q=0
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ENERGY METHOD – LARGE DEFLECTIONS 

 

Rigid bar with translational spring
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ENERGY METHOD - IMPERFECTIONS 

 Consider example 2 – but as a system with imperfections 

 The initial imperfection given by the angle q0 as shown below 

 

 

 

 

 The free body diagram of the deformed system is shown below 
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ENERGY METHOD - IMPERFECTIONS 

 As shown in the figure, deflection starts as soon as loads are 
applied. There is no bifurcation of load-deformation path for 
imperfect systems. The load-deformation path remains in the 
same state through-out.  

 The smaller the imperfection magnitude, the close the load-
deformation paths to the perfect system load –deformation path.  

 The magnitude of load, is influenced significantly by the 
imperfection magnitude. 

 All real systems have imperfections. They may be very small but 
will be there 

 The magnitude of imperfection is not easy to know or guess. 
Hence if a perfect system analysis is done, the results will be 
close for an imperfect system with small imperfections.  

 However, for an unstable system – the effects of imperfections 
may be too large. 



ENERGY METHODS – IMPERFECT SYSTEMS 

 Examine the stability of the imperfect system using higher order 

derivatives of P 

 

 

 

 

 

 

 

 



















q

q

qqqq
q

qqqq
q

qqqq

sin

sin
1

cos)sinsin2(cos

sincos)sin(sin

)cos(cos)sin(sin
2

1

0

0

2

2

2

0

2

0

2

0

2

LkPmequilibriuFor

LPLk
d

d

LPLk
d

d

LPLk








 












 












































q

qq

q

q

qqqq

q

q

qq
qqq

q

q

qq
qqqqq

q

q
q

q
qqq

q

sin

sinsin

sin

)cos(sinsinsin

sin

cossin
sinsinsin

sin

cossin
cossinsinsincos

cos
sin

sin
1)sinsin2(cos

0

3

2

2

2

22

0

3

2

2

2

2

0

0

22

2

2

2

02

0

222

2

2

202

0

2

2

2

Lk
d

d

Lk
d

d

Lk
d

d

Lk
d

d

LkLk
d

d



0
sin

sinsin
sinsin

sin1
sin

sin
1

cos
sin

sin
1

cos)
sin

sin
1(cos

cos)
sin

sin
1(cos

3

02

2

2
3

0

20

20

30

max

3

max

0








 















q

qq

q
qq

q
q

q

q
q

q

q
q

q
q

q
q

q
q

Lk
d

d
and

LkLk

PPWhen

LkPandLkP

ENERGY METHOD – IMPERFECT SYSTEMS 

UnstablePPwhen
d

d

StablePPwhen
d

d

Lk
d

d














 




max2

2

max2

2

0

3
2

2

2

0

0

sin

sinsin

q

q

q

qq

q

0
sin

sinsin
sinsin

sin1
sin

sin
1

cos
sin

sin
1

cos)
sin

sin
1(cos

3

02

2

2
3

0

20

20

30

max








 













q

qq

q
qq

q
q

q

q
q

q

q
q

q
q

Lk
d

d
and

LkLk

PPWhen



Chapter 2. – Second-Order Differential Equations 

 This chapter focuses on deriving second-order differential 

equations governing the behavior of elastic members 

 2.1 – First order differential equations 

 2.2 – Second-order differential equations 



2.1 First-Order Differential Equations 

 Governing the behavior of structural members 

 Elastic, Homogenous, and Isotropic 

 Strains and deformations are really small – small deflection theory 

 Equations of equilibrium in undeformed state 

 Consider the behavior of a beam subjected to bending and axial 

forces 



2.1 First-Order Differential Equations 

 Assume tensile forces are positive and moments are positive 

according to the right-hand rule 

 Longitudinal stress due to bending 

 

 

 This is true when the x-y axis system is 

a centroidal and principal axis system. 
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2.1 First-Order Differential Equations 

 The corresponding strain is 
 

 If P=My=0, then 

 Plane-sections remain plane and perpendicular 

to centroidal axis before and after bending 

 The measure of bending is curvature f which 

denotes the change in the slope of the 

centroidal axis between two point dz apart 
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2.1 First-Order Differential Equations 

 Shear Stresses due to bending 
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2.1 First-Order Differential Equations 

 Differential equations of bending 

 Assume principle of superposition 

 Treat forces and deformations in y-z and x-z 

plane seperately 

 Both the end shears and qy act in a plane 

parallel to the y-z plane through the shear 

center S 
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2.1 First-Order Differential Equations 

 Differential equations of bending 

 

 

 

 

 

 

 

 

 

 Fourth-order differential equations using first-

order force-deformation theory 

 

 

directionypositiveindeflectionv

directionxpositiveindeflectionu

quIESimilarly

qvIE

v

sdeflectionsmallFor

v

v

qIE

x

iv

y

y

iv

x

y

y

yyx


















f

f

f

2/32)(1



Torsion behavior – Pure and Warping Torsion 

 Torsion behavior – uncoupled from bending behavior 

 Thin walled open cross-section subjected to torsional moment 

 This moment will cause twisting and warping of the cross-section. 

 The cross-section will undergo pure and warping torsion behavior.   

 Pure torsion will produce only shear stresses in the section 

 Warping torsion will produce both longitudinal and shear stresses  

 The internal moment produced by the pure torsion response will be 

equal to Msv and the internal moment produced by the warping 

torsion response will be equal to Mw. 

 The external moment will be equilibriated by the produced internal 

moments 

 MZ=MSV + MW 



Pure and Warping Torsion 

MZ=MSV + MW 

Where,  

 MSV = G KT f′       and     MW = - E Iw f"‘ 

 MSV = Pure or Saint Venant’s torsion moment 

 KT = J = Torsional constant =  

 f is the angle of twist of the cross-section. It is a function of z. 

 IW is the warping moment of inertia of the cross-section. This is 

a new cross-sectional property you may not have seen before. 

MZ = G KT f′ - E Iw f"‘   ……… (3), differential equation of torsion 



 Lets look closely at pure or Saint Venant’s torsion. This occurs when 
the warping of the cross-section is unrestrained or absent 

 

 

 

 

 

 

 

 

 For a circular cross-section – warping is absent. For thin-walled open 
cross-sections, warping will occur.  

 The out of plane warping deformation w can be calculated using an 
equation I will not show.  

Pure Torsion Differential Equation 
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The torsional shear stresses vary linearly about the center of the thin plate 

 

 

 

 

 

 

Pure Torsion Stresses 
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Warping deformations 

 The warping produced by pure torsion can be restrained by the: 

(a) end conditions, or (b) variation in the applied torsional 

moment (non-uniform moment) 

 The restraint to out-of-plane warping deformations will produce 

longitudinal stresses (w) , and their variation along the length 

will produce warping shear stresses (w) .  



Warping Torsion Differential Equation 
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 Lets take a look at an approximate derivation of the warping 

torsion differential equation.  

 This is valid only for I and C shaped sections. 



Torsion Differential Equation Solution 

 Torsion differential equation MZ=MSV+MW = G KT f’- E IW f
’’’ 

 This differential equation is for the case of concentrated torque 

 

 

 

 Torsion differential equation for the case of distributed torque 

 

 

 

 

 

 The coefficients C1 .... C6 can be obtained using end conditions 
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Torsion Differential Equation Solution 

 Torsionally fixed end conditions are given by 

 These imply that twisting and warping at the fixed end are fully 

restrained. Therefore, equal to zero. 

 Torsionally pinned or simply-supported end conditions given by: 

 

 These imply that at the pinned end twisting is fully restrained (f=0) and 

warping is unrestrained or free. Therefore, W=0 f’’=0 

 Torsionally free end conditions given by f’=f’’ = f’’’= 0 

 These imply that at the free end, the section is free to warp and there 

are no warping normal or shear stresses. 

 Results for various torsional loading conditions given in the AISC 

Design Guide 9 – can be obtained from my private site 
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Warping Torsion Stresses 

 Restraint to warping produces longitudinal and shear stresses 

 

 

 

 

 The variation of these stresses over the section is defined by the 

section property Wn and Sw 

 The variation of these stresses along the length of the beam is defined 

by the derivatives of f.  

 Note that a major difference between bending and torsional behavior is 

 The stress variation along length for torsion is defined by derivatives of f, 

which cannot be obtained using force equilibrium.  

 The stress variation along length for bending is defined by derivatives of v, 

which can be obtained using force equilibrium (M, V diagrams). 
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Torsional Stresses 

 



Torsional Stresses 

 



Torsional Section Properties for I and C Shapes 

 



f and derivatives for concentrated torque at midspan 



Summary of first order differential equations 
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NOTES: 

(1) Three uncoupled differential equations  

(2) Elastic material – first order force-deformation theory 

(3) Small deflections only 

(4) Assumes – no influence of one force on other deformations 

(5) Equations of equilibrium in the undeformed state. 



HOMEWORK # 3 

 Consider the 22 ft. long simply-supported W18x65 wide flange beam 

shown in Figure 1 below. It is subjected to a uniformly distributed load 

of 1k/ft that is placed with an eccentricity of 3 in. with respect to the 

centroid (and shear center).  

 At the mid-span and the end support cross-sections, calculate the 

magnitude and distribution of:  

 Normal and shear stresses due to bending 

 Shear stresses due to pure torsion 

 Warping normal and shear stresses over the cross-section. 

 Provide sketches and tables of the individual normal and shear stress 

distributions for each case. 

 Superimpose the bending and torsional stress-states to determine the 

magnitude and location of maximum stresses.  



HOMEWORK # 2 

22 ft. 

W18x65 

3in. 

Cross-section 

Span 



Chapter 2. – Second-Order Differential Equations 

 This chapter focuses on deriving second-order differential 

equations governing the behavior of elastic members 

 2.1 – First order differential equations 

 2.2 – Second-order differential equations 



2.2 Second-Order Differential Equations 

 Governing the behavior of structural members 

 Elastic, Homogenous, and Isotropic 

 Strains and deformations are really small – small deflection theory 

 Equations of equilibrium in deformed state 

 The deformations and internal forces are no longer independent. 

They must be combined to consider effects. 

 Consider the behavior of a member subjected to combined axial 

forces and bending moments at the ends. No torsional forces 

are applied explicitly – because that is very rare for CE 

structures.  



Member model and loading conditions 

 Member is initially straight and prismatic. 

It has a thin-walled open cross-section 

 Member ends are pinned and prevented 

from translation. 

 The forces are applied only at the 

member ends 

 These consist only of axial and bending 

moment forces P, MTX, MTY, MBX, MBY 

 Assume elastic behavior with small 

deflections 

 Right-hand rule for positive moments and 

reactions and P assumed positive. 



Member displacements (cross-sectional) 

 Consider the middle line of thin-

walled cross-section 

 x and y are principal coordinates 

through centroid C 

 Q is any point on the middle line. 

It has coordinates (x, y). 

 Shear center S coordinates are 

(xo, y0) 

 Shear center S displacements 

are u, v, and f 



Member displacements (cross-sectional) 

 Displacements of Q are:  

 uQ = u + a f sin a  

 vQ = v – a f  cos a  

 where a is the distance from Q to S 

 But, sin a = (y0-y) / a 

 cos a = (x0-x) / a 

 Therefore, displacements of Q are:  

 uQ = u + f (y0-y)  

 vQ = v – f (x0 – x)   

 Displacements of centroid C are: 

 uc = u + f (y0) 

 vc = v - f (x0) 

 



Internal forces – second-order effects 

 Consider the free body diagrams of 

the member in the deformed state.  

 Look at the deformed state in the x-z 

and y-z planes in this Figure.  

 The internal resisting moment at a 

distance z from the lower end are: 

 Mx = - MBX + Ry z + P vc 

 My = - MBY + Rx z - P uc 

 The end reactions Rx and Ry are: 

 Rx = (MTY + MBY) / L 

 Ry = (MTX + MBX) / L 



 Therefore, 

 

 

 

 

 

 

 

 

 

 

Internal forces – second-order effects 
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Internal forces in the deformed state 
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 In the deformed state,  the cross-section is such that the principal 

coordinate systems are changed from x-y-z to the xhz system 
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Internal forces in the deformed state 

 The internal forces Mx and My must be transformed to these new xh
z axes 

 Since the angle f is small 

 Mx  Mx + f My 

 Mh = My – f Mx 
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Twisting component of internal forces 

 Twisting moments Mz are produced by the internal and external 

forces 

 There are four components contributing to the total Mz  

 (1) Contribution from Mx and My – Mz1  

 (2) Contribution from axial force P – Mz2 

 (3) Contribution from normal stress  – Mz3 

 (4) Contribution from end reactions Rx and Ry – Mz4 

 

 The total twisting moment Mz = Mz1 + Mz2 + Mz3 + Mz4  



Twisting component – 1 of 4 

 

 

 

 

 

 

 

 Twisting moment due to Mx & My 

 Mz1 = Mx sin (du/dz) + Mysin (dv/dz) 

 Therefore, due to small angles, Mz1 =  Mx du/dz + My dv/dz 

 Mz1 =  Mx u’ + My v’ 

 

u 
v 



Twisting component – 2 of 4 

 

 

 

 

 

 

 

 The axial load P acts along the original vertical direction 

 In the deformed state of the member, the longitudinal axis z is not 
vertical. Hence P will have components producing shears.  

 These components will act at the centroid where P acts and will have 
values as shown above – assuming small angles 

u v 



Twisting component – 2 of 4 

 These shears will act at the centroid C, which is eccentric with 

respect to the shear center S. Therefore, they will produce 

secondary twisting. 

 

 

 

 

 

 Mz2 = P (y0 du/dz – x0 dv/dz) 

 Therefore, Mz2 = P (y0 u’ – x0 v’) 

 



Twisting component – 3 of 4 

 The end reactions (shears) Rx and Ry act at the shear center S 

at the ends. But, along the member ends, the shear center will 

move by u, v, and f. 

 Hence, these reactions will also have a twisting effect produced 

by their eccentricity with respect to the shear center S.  

 Mz4 + Ry u + Rx v = 0 

 Therefore,  

 Mz4 = – (MTY + MBY) v/L – (MTX + MBX) u/L 

 



Twisting component – 4 of 4 

 Wagner’s effect or contribution 

– complicated. 

 Two cross-sections that are dz 

apart will warp with respect to 

each other.  

 The stress element  dA will 

become inclined by angle (a 

df/dz) with respect to dz axis. 

 Twist produced by each stress 

element about S is equal to  

( )

dAa
d

d
M

d

d
adAadM

A

2
3

3














z

f

z

f


z

z



Twisting component – 4 of 4 
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Twisting component – 4 of 4 
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Total Twisting Component 

 Mz = Mz1 + Mz2 + Mz3 + Mz4  

 Mz1 =  Mx u’ + My v’ 

 Mz2 = P (y0 u’ – x0 v’) 

 Mz4 = – (MTY + MBY) v/L – (MTX + MBX) u/L 

 Mz3 = -K f’ 

 Therefore, 

Mz  Mx u’ + My v’+ P (y0 u’ – x0 v’) – (MTY + MBY) v/L – (MTX + MBX) u/L-K 

f’ 

 

 While,  
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Total Twisting Component 

 Mz = Mz1 + Mz2 + Mz3 + Mz4  

 Mz1 =  Mx u’ + My v’             Mz2 = P (y0 u’ – x0 v’)                 Mz3 = -K f’ 

 Mz4 = – (MTY + MBY) v/L – (MTX + MBX) u/L 

 Therefore, 
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 Thus, now we have the internal moments about the xhz axes for the 

deformed member cross-section. 

 

 

 

 

 

 

Internal moments about the xhz axes 
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Internal Moment – Deformation Relations 

 The internal moments Mx, Mh, and Mz will still produce flexural bending 

about the centroidal principal axis and twisting about the shear center.  

 The flexural bending about the principal axes will produce 

linearly varying longitudinal stresses. 

 The torsional moment will produce longitudinal and shear 

stresses due to warping and pure torsion. 

 The differential equations relating moments to deformations are 

still valid. Therefore, 

    Mx = - E Ix v” …………………..(Ix = Ix) 

   Mh = E Ih u” …………………..(Ih = Iy) 

   Mz = G KT f’ – E Iw f’” 

 



Internal Moment – Deformation Relations 
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Second-Order Differential Equations 
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You end up with three coupled differential equations that relate 

the applied forces and moments to the deformations u, v, and f. 

These differential equations can be used to investigate the elastic 

behavior and buckling of beams, columns, beam-columns and 

also complete frames – that will form a major part of this course. 
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Chapter 3. Structural Columns 

 3.1 Elastic Buckling of Columns  

 3.2 Elastic Buckling of Column Systems – Frames 

 3.3 Inelastic Buckling of Columns 

 3.4 Column Design Provisions (U.S. and Abroad) 



3.1 Elastic Buckling of Columns 

 Start out with the second-order differential equations derived in 

Chapter 2. Substitute P=P and MTY = MBY = MTX = MBX = 0 

 Therefore, the second-order differential equations simplify to: 

 

 

 

 

 This is all great, but before we proceed any further we need to 

deal with Wagner’s effect – which is a little complicated. 
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Wagner’s effect for columns 
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Wagner’s effect for columns 
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Second-order differential equations for columns 

 Simplify to: 
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Column buckling – doubly symmetric section 

 For a doubly symmetric section, the shear center is located at the 

centroid xo= y0 = 0. Therefore, the three equations become uncoupled 

 

 
 

 

 Take two derivatives of the first two equations and one more derivative 

of the third equation. 
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Column buckling – doubly symmetric section 

 

 

 
 

 All three equations are similar and of the fourth order. The 

solution will be of the form C1 sin lz + C2 cos lz + C3 z + C4 

 Need four boundary conditions to evaluate the constant C1..C4 

 For the simply supported case, the boundary conditions are: 

 u= u”=0; v= v”=0; f= f”=0 

 Lets solve one differential equation – the solution will be valid for 

all three. 
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Column buckling – doubly symmetric section 
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Column buckling – doubly symmetric section 
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Column buckling – doubly symmetric section 

 Thus, for a doubly symmetric cross-section, there are three distinct 

buckling loads Px, Py, and Pz.  
 

 The corresponding buckling modes are:  

 v = C1 sin(z/L), u =C2 sin(z/L), and f = C3 sin(z/L).  

 

 These are, flexural buckling about the x and y axes and torsional 

buckling about the z axis.  
 

 As you can see, the three buckling modes are uncoupled. You must 

compute all three buckling load values.  
 

 The smallest of three buckling loads will govern the buckling of the 

column. 



Column buckling – boundary conditions 

2

1 2 3 4

1 2 3

2 4

1 3

1 2 3 4

1 2

0

sin cos

cos sin

:

(0) (0) ( ) ( ) 0

0 (0) 0

0 (0) 0

sin cos ( ) 0

cos sin

iv

v

v v

v v v v

v

v v

v v v

v F v

Solution is

v C F z C F z C z C

v C F F z C F F z C

Boundary conditions

v v v L v L

C C v

C F C v

C F L C F L C L C v L

C F F L C F F

 

   

   

    

   

  

   

 3

1

2

3

4

( ) 0

0 1 0 1 0

0 1 0 0

sin cos 1 0

0cos sin 1 0

v

v

v v

v v v v

L C v L

C

F C

F L F L L C

CF F L F F L

 

     
        

     
     

        

Consider the case of fix-fix boundary conditions: 

( ) ( )

2 2

2

2 2

2 2

0

sin 2cos 2 0

2 sin cos 2sin 0
2 2 2

2

2

4

1:

0.5

v v v

v v v
v

v

v

x x

x x
x

The coefficient matrix

F L F L F L

F L F L F L
F L

F L
n

n
F

L

n
P E I

L

Smallest value of n

E I E I
P

L K L







 



   

 
   

 

 

 

 



  



Column Boundary Conditions 

 The critical buckling loads for columns with different boundary 

conditions can be expressed as:  

 

 

 

 

 

 Where, Kx, Ky, and Kz are functions of the boundary conditions: 

 K=1 for simply supported boundary conditions 

 K=0.5 for fix-fix boundary conditions 

 K=0.7 for fix-simple boundary conditions 
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Column buckling – example. 

 Consider a wide flange column W27 x 84. The boundary conditions are:  

    v=v”=u=u’=f=f’=0 at z=0, and v=v”=u=u’=f=f”=0 at z=L 

 For flexural buckling about the x-axis – simply supported – Kx=1.0 

 For flexural buckling about the y-axis – fixed at both ends – Ky = 0.5 

 For torsional buckling about the z-axis – pin-fix at two ends - Kz=0.7 
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Column buckling – example. 
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Column buckling – example. 

 When L is such that L/rx < 31; torsional buckling will govern 

 rx = 10.69 in. Therefore, L/rx = 31  L=338 in.=28 ft. 

 Typical column length =10 – 15 ft. Therefore, typical L/rx= 11.2 – 16.8  

 Therefore elastic torsional buckling will govern.  

 But, the predicted load is much greater than PY. Therefore, inelastic 

buckling will govern. 

 

 Summary – Typically must calculate all three buckling load values to 

determine which one governs. However, for common steel buildings 

made using wide flange sections – the minor (y-axis) flexural buckling 

usually governs.  

 In this problem, the torsional buckling governed because the end 

conditions for minor axis flexural buckling were fixed. This is very 

rarely achieved in common building construction. 



Column Buckling – Singly Symmetric Columns 

 Well, what if the column has only one axis of symmetry. Like the x-

axis or the y-axis or so.  
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 As shown in this figure, the y – axis 

is the axis of symmetry. 

 The shear center S will be located 

on this axis. 

 Therefore x0= 0.  

 The differential equations will 

simplify to: 
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Column Buckling – Singly Symmetric Columns 

 The first equation for flexural buckling about the x-axis (axis of 

non-symmetry) becomes uncoupled.  
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 Equations (2) and (3) are still 

coupled in terms of u and f. 

 

 

 These equations will be satisfied by 

the solutions of the form  

 u=C2 sin (z/L) and f=C3 sin (z/L)  
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Column Buckling – Singly Symmetric Columns 
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Column Buckling – Singly Symmetric Columns 
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Column Buckling – Singly Symmetric Columns 
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Column Buckling – Singly Symmetric Columns 

 The critical buckling load will the lowest of Px and the two roots 

shown on the previous slide. 

 If the flexural torsional buckling load govern, then the buckling 

mode will be C2 sin (z/L) x C3 sin (z/L) 

 This buckling mode will include both flexural and torsional 

deformations – hence flexural-torsional buckling mode. 



Column Buckling – Asymmetric Section 

 No axes of symmetry: Therefore, shear center S (xo, yo) is such that 

neither xo not yo are zero.  

 

 

 

 

 For simply supported boundary conditions: (u, u”, v, v”, f, f”=0), the 

solutions to the differential equations can be assumed to be: 

 u = C1sin (z/L) 

 v = C2 sin (z/L) 

 f = C3 sin (z/L) 

 These solutions will satisfy the boundary conditions noted above 
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Column Buckling – Asymmetric Section 

 Substitute the solutions into the d.e. and assume that it satisfied too:  

 2
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Column Buckling – Asymmetric Section 

 

 

 

 

 

 Either C1, C2, C3 = 0 (no buckling), or the determinant of the coefficient 

matrix =0 at buckling.  

 Therefore, determinant of the coefficient matrix is:  
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Column Buckling – Asymmetric Section 

 

 

 This is the equation for predicting buckling of a column with an 

asymmetric section.  

 The equation is cubic in P. Hence, it can be solved to obtain three 

roots Pcr1, Pcr2, Pcr3. 

 The smallest of the three roots will govern the buckling of the column. 

 The critical buckling load will always be smaller than Px, Py, and Pf 

 The buckling mode will always include all three deformations u, v, and 

f. Hence, it will be a flexural-torsional buckling mode. 

 For boundary conditions other than simply-supported, the 

corresponding Px, Py, and Pf can be modified to include end condition 

effects Kx, Ky, and Kf 
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Homework No. 4 
 See word file 

 Problem No. 1 
 Consider a column with doubly symmetric cross-section. The boundary conditions 

for flexural buckling are simply supported at one end and fixed at the other end.  

 Solve the differential equation for flexural buckling for these boundary conditions 
and determine the eigenvalue (buckling load) and the eigenmode (buckling shape). 
Plot the eigenmode. 

 How the eigenvalue compare with the effective length approach for predicting 
buckling?  

 What is the relationship between the eigenmode and the effective length of the 
column (Refer textbook).  

 Problem No. 2 
 Consider an A992 steel W14 x 68 column cross-section. Develop the normalized 

buckling load (Pcr/PY) vs. slenderness ratio (L/rx) curves for the column cross-
section. Assume that the boundary conditions are simply supported for buckling 
about the x, y, and z axes.  

 Which buckling mode dominates for different column lengths?  

 Is torsional buckling a possibility for practical columns of this length? 

 Will elastic buckling occur for most practical lengths of this column? 

 Problem No. 3 
 Consider a C10 x 30 column section. The length of the column is 15 ft. What is the 

buckling capacity of the column if it is simply supported for buckling about the y-
axis (of non-symmetry), pin-fix for flexure about the x-axis (of symmetry) and 
simply supported in torsion about the z-axis. Which buckling mode dominates?  



Column Buckling - Inelastic 

A long topic 



Effects of geometric imperfection 

 

EIx
  v  Pv  0

EIy
  u  Pu  0

Leads to bifurcation buckling of 

perfect doubly-symmetric columns 

P 

 

vo  do sin
z

L

v 

v 
vo 

P 

Mx 

 

Mx  P(v  vo )  0

 EIx
  v  P(v  vo )  0

   v  Fv

2(v  vo )  0

   v  Fv

2v  Fv

2vo

   v  Fv

2v  Fv

2(do sin
z

L
)

Solution  vc  v p

vc  A sin(Fvz)  Bcos(Fvz)

v p  C sin
z

L
 Dcos

z

L



Effects of Geometric Imperfection 

 

Solve for C and D first

   v p  Fv

2v p  Fv

2do sin
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Geometric Imperfection 

 

Solve for A and B

Boundary conditions v(0)  v(L)  0

v(0)  B  0

v(L)  A sin FvL  0

 A  0

 Solution becomes

v 
Fv

2do
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Total Deflection

 v  vo 
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do sin
z

L


1

1
P

PE

do sin
z

L

 AFdo sin
z

L

AF = amplification factor 



Geometric Imperfection 

 

AF 
1

1
P

PE

 amplification factor

Mx  P(v  vo )

 Mx  AF (Pdo sin
z

L
)

i.e., Mx  AF  (moment due to initial crooked)
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Increases exponentially 

Limit AF for design 

Limit P/PE for design 

 

Value used in the code is 0.877 

This will give AF = 8.13 

Have to live with it.  



Residual Stress Effects 



Residual Stress Effects 



History of column inelastic buckling 

 Euler developed column elastic buckling equations (buried in the 

million other things he did).  

 Take a look at: http://en.wikipedia.org/wiki/EuleR 

 An amazing mathematician 

 In the 1750s, I could not find the exact year.  

 The elastica problem of column buckling indicates elastic 

buckling occurs with no increase in load.  

 dP/dv=0 

 

http://en.wikipedia.org/wiki/EuleR


History of Column Inelastic Buckling 

 Engesser extended the elastic column buckling theory in 1889.  

 He assumed that inelastic 

 buckling occurs with no  

 increase in load, and the  

 relation between stress 

 and strain is defined by  

 tangent modulus Et 

 

 

 Engesser’s tangent modulus theory is easy to apply. It 

compares reasonably with experimental results.  

 PT=ETI / (KL)2 



History of Column Inelastic Buckling 

 In 1895, Jasinsky pointed out the problem with Engesser’s 

theory.  

 If dP/dv=0, then the 2nd order moment (Pv) will produce 

incremental strains that will vary linearly and have a zero value at 

the centroid (neutral axis).  

 The  linear strain variation will have compressive and tensile 

values. The tangent modulus for the incremental compressive 

strain is equal to Et and that for the tensile strain is E.  



History of Column Inelastic Buckling 

 In 1898, Engesser corrected his original theory by accounting 

for the different tangent modulus of the tensile increment.  

 This is known as the reduced modulus or double modulus 

 The assumptions are the same as before. That is, there is no 

increase in load as buckling occurs. 

 The corrected theory is shown in the following slide 



History of Column Inelastic Buckling 

 The buckling load PR produces critical 

stress R=Pr/A 

 During buckling, a small curvature df 

is introduced  

 The strain distribution is shown. 

 The loaded side has dL and dL 

 The unloaded side has dU and dU 

 

 

dL  (y  y1  y) df

dU  (y  y  y1) df

 d L  E t ( y  y1  y) df

 dU  E(y  y  y1) df



History of Column Inelastic Buckling 

 

df     v 

d L  E t (y  y1  y)   v 

dU  E(y  y  y1)   v 

But, the assumption is dP  0

 dU dA 
y y1

y 

 d L dA
( d y )

y y1

  0

 E( y  y  y1) dA 
y y1

y 

 E t ( y  y1  y) dA
( d y )

y y1

  0

 ES1  E tS2  0

where, S1  ( y  y  y1) dA
y y1

y 



and S2 ( y  y1  y) dA
( d y )

y y1





History of Column Inelastic Buckling 

 S1 and S2 are the statical moments of the areas to the left and 

right of the neutral axis.   

 Note that the neutral axis does not coincide with the centroid any 

more.  

 The location of the neutral axis is calculated using the equation 

derived ES1 - EtS2 = 0 

 

 

 

M  Pv

 M  dU ( y  y y1) dA 
y y1

y 

 d L (y  y1  y) dA
( d y )

y y1



 M  Pv     v ( EI1  E tI2 )

where, I1  ( y  y  y1)
2 dA

y y1

y 



and I2 ( y  y1  y)2 dA
( d y )

y y1





History of Column Inelastic Buckling 

 

 

 

 

 

 

 

 

 

 

 

M  Pv     v ( EI1  E tI2 )

 Pv  ( EI1  E tI2 )   v  0

   v 
P

EI1  E tI2
v  0

   v  Fv

2v  0

where, Fv

2 
P

EI1  E tI2


P

E Ix

and E  E
I1

Ix

 E t

I2

Ix

PR 
 2E Ix

(KL)2

E is the reduced or double modulus 

PR is the reduced modulus buckling load 



History of Column Inelastic Buckling 

 For 50 years, engineers were faced with the dilemma that the 

reduced modulus theory is correct, but the experimental data 

was closer to the tangent modulus theory. How to resolve? 

 Shanley eventually resolved this dilemma in 1947. He 

conducted very careful experiments on small aluminum 

columns.  

 He found that lateral deflection started very near the theoretical 

tangent modulus load and the load capacity increased with 

increasing lateral deflections. 

 The column axial load capacity never reached the calculated 

reduced or double modulus load.  

 Shanley developed a column model to explain the observed 

phenomenon 



History of Column Inelastic Buckling 



History of Column Inelastic Buckling 



History of Column Inelastic Buckling 

 



History of Column Inelastic Buckling 

 

 

 

 

 

 







Column Inelastic Buckling 

 Three different theories 

 Tangent modulus 

 Reduced modulus 

 Shanley model 

 

 Tangent modulus theory 

assumes  

 Perfectly straight column 

 Ends are pinned 

 Small deformations 

 No strain reversal during 

buckling 

 

P 

dP/dv=0 

v 

Elastic buckling analysis 

Slope is zero at buckling 

P=0 with increasing v 

PT 



Tangent modulus theory 

 Assumes that the column buckles at the tangent modulus load such 

that there is an increase in P (axial force) and M (moment).  

 The axial strain increases everywhere and there is no strain reversal.  

 
PT 

v 

PT 

Mx 
v 

T=PT/A 

Strain and stress state just before buckling 

Strain and stress state just after buckling 

T 

T 

T 

T 

T=ETT 

Mx - Pv = 0 

Curvature = f = slope of strain diagram 

 

f 
T

h

T  f
h

2
 y

 

 
 

 

 
 where y  dis tan ce from centroid

T  f
h

2
 y

 

 
 

 

 
  ET



Tangent modulus theory 

 Deriving the equation of equilibrium 

 

 

 

 

 

 

 

 

 The equation Mx- PTv=0 becomes -ETIxv” - PTv=0 

 Solution is PT= 2ETIx/L
2 



Example - Aluminum columns 

 Consider an aluminum column with Ramberg-Osgood stress-

strain curve 
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Tangent Modulus Buckling 

Ramberg-Osgood Stress-Strain
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Tangent Modulus Buckling 

Column Inelastic Buckling Curve
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Residual Stress Effects 

 Consider a rectangular section 

with a simple residual stress 

distribution 

 Assume that the steel material 

has elastic-plastic stress-strain 

 curve. 

 Assume simply supported end 

conditions 

 Assume triangular distribution 

for residual stresses 
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Residual Stress Effects 

 One major constrain on residual 
stresses is that they must be such 
that  

 

 

 

 

 

 

 

 Residual stresses are produced by 
uneven cooling but no load is 
present 
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Residual Stress Effects 

 Response will be such that - 

elastic behavior when  

 

  0.5 y

Px 
 2EIx

L2
and Py 

 2EIy

L2

Yielding occurs when

  0.5 y i.e., P  0.5PY

Inelastic buckling will occur after   0.5 y
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Residual Stress Effects 

 

Total axial force corresponding to the yielded sec tion
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 

If inelastic buckling occurs about x  axis
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 

If inelastic buckling occurs about y  axis
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Residual Stress Effects 

P/PY lx ly

0.200 2.236 2.236

0.250 2.000 2.000

0.300 1.826 1.826

0.350 1.690 1.690

0.400 1.581 1.581

0.450 1.491 1.491

0.500 1.414 1.414

0.550 1.313 1.246

0.600 1.221 1.092

0.650 1.135 0.949

0.700 1.052 0.815

0.750 0.971 0.687

0.800 0.889 0.562

0.850 0.803 0.440

0.900 0.705 0.315

0.950 0.577 0.182

0.995 0.317 0.032

Column Inelastic Buckling
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Tangent modulus buckling - Numerical  

Centroidal axis 

Afib 

yfib 

Discretize the cross-section into fibers 

Think about the discretization. Do you need the flange 

To be discretized along the length and width? 

For each fiber, save the area of fiber (Afib), the  

distances from the centroid yfib and xfib,  

Ix-fib and Iy-fib the fiber number in the matrix.   

Discretize residual stress distribution 

Calculate residual stress (r-fib) 

each fiber 

Check that sum(r-fib Afib)for  

Section = zero 

1 

2 

3 

4 

5 



Tangent Modulus Buckling - Numerical 

Calculate effective residual  

strain (r) for each fiber 

r=r/E 

Assume centroidal strain 

 

Calculate total strain for each fiber 

tot=+r 

Assume a material stress-strain  

curve for each fiber 

Calculate stress in each fiber fib 

Calculate Axial Force = P  

Sum (fibAfib)  

Calculate average stress =  = P/A 

Calculate the tangent (EI)TX and (EI)TY for the  
(EI)TX = sum(ET-fib{yfib

2 Afib+Ix-fib}) 

(EI)Ty = sum(ET-fib{xfib
2 Afib+ Iy-fib}) 

Calculate the critical (KL)X and (KL)Y for the  
(KL)X-cr =  sqrt [(EI)Tx/P] 

(KL)y-cr =  sqrt [(EI)Ty/P] 
6 

7 

8 

9 
10 

11 

12 

13 

14 



Tangent modulus buckling - numerical 

Section Dimension

b 12 fiber no. Afib xfib yfib r-fib r-fib Ixfib Iyfib

d 4 1 2.4 -5.7 0 -22.5 -7.759E-04 3.2 78.05

y 50 2 2.4 -5.1 0 -17.5 -6.034E-04 3.2 62.50

3 2.4 -4.5 0 -12.5 -4.310E-04 3.2 48.67

No. of fibers 20 4 2.4 -3.9 0 -7.5 -2.586E-04 3.2 36.58

5 2.4 -3.3 0 -2.5 -8.621E-05 3.2 26.21

6 2.4 -2.7 0 2.5 8.621E-05 3.2 17.57

A 48 7 2.4 -2.1 0 7.5 2.586E-04 3.2 10.66

Ix 64 8 2.4 -1.5 0 12.5 4.310E-04 3.2 5.47

Iy 576.00 9 2.4 -0.9 0 17.5 6.034E-04 3.2 2.02

10 2.4 -0.3 0 22.5 7.759E-04 3.2 0.29

11 2.4 0.3 0 22.5 7.759E-04 3.2 0.29

12 2.4 0.9 0 17.5 6.034E-04 3.2 2.02

13 2.4 1.5 0 12.5 4.310E-04 3.2 5.47

14 2.4 2.1 0 7.5 2.586E-04 3.2 10.66

15 2.4 2.7 0 2.5 8.621E-05 3.2 17.57

16 2.4 3.3 0 -2.5 -8.621E-05 3.2 26.21

17 2.4 3.9 0 -7.5 -2.586E-04 3.2 36.58

18 2.4 4.5 0 -12.5 -4.310E-04 3.2 48.67

19 2.4 5.1 0 -17.5 -6.034E-04 3.2 62.50

20 2.4 5.7 0 -22.5 -7.759E-04 3.2 78.05



Tangent Modulus Buckling - numerical 

Strain Increment

 Fiber no. tot fib Efib Tx-fib Ty-fib Pfib

-0.0003 1 -1.076E-03 -31.2 29000 92800 2.26E+06 -74.88

2 -9.034E-04 -26.2 29000 92800 1.81E+06 -62.88

3 -7.310E-04 -21.2 29000 92800 1.41E+06 -50.88

4 -5.586E-04 -16.2 29000 92800 1.06E+06 -38.88

5 -3.862E-04 -11.2 29000 92800 7.60E+05 -26.88

6 -2.138E-04 -6.2 29000 92800 5.09E+05 -14.88

7 -4.138E-05 -1.2 29000 92800 3.09E+05 -2.88

8 1.310E-04 3.8 29000 92800 1.59E+05 9.12

9 3.034E-04 8.8 29000 92800 5.85E+04 21.12

10 4.759E-04 13.8 29000 92800 8.35E+03 33.12

11 4.759E-04 13.8 29000 92800 8.35E+03 33.12

12 3.034E-04 8.8 29000 92800 5.85E+04 21.12

13 1.310E-04 3.8 29000 92800 1.59E+05 9.12

14 -4.138E-05 -1.2 29000 92800 3.09E+05 -2.88

15 -2.138E-04 -6.2 29000 92800 5.09E+05 -14.88

16 -3.862E-04 -11.2 29000 92800 7.60E+05 -26.88

17 -5.586E-04 -16.2 29000 92800 1.06E+06 -38.88

18 -7.310E-04 -21.2 29000 92800 1.41E+06 -50.88

19 -9.034E-04 -26.2 29000 92800 1.81E+06 -62.88

20 -1.076E-03 -31.2 29000 92800 2.26E+06 -74.88



Tangent Modulus Buckling - Numerical 

 P Tx Ty KLx-cr KLy-cr T/Y (KL/r)x (KL/r)y

0.0003 -417.6 15000 104000 209.4395102 628.3185307 0.174 181.3799364 181.3799364

0.0004 -556.8 15000 104000 181.3799364 544.1398093 0.232 157.0796327 157.0796327

-0.0005 -696 1856000 16704000 162.231147 486.6934411 0.29 140.4962946 140.4962946

-0.0006 -835.2 1856000 16704000 148.0960979 444.2882938 0.348 128.254983 128.254983

-0.0007 -974.4 1856000 16704000 137.1103442 411.3310325 0.406 118.7410412 118.7410412

-0.0008 -1113.6 1856000 16704000 128.254983 384.764949 0.464 111.0720735 111.0720735

-0.0009 -1252.8 1856000 16704000 120.9199576 362.7598728 0.522 104.7197551 104.7197551

-0.001 -1384.8 1670400 12177216 109.11051 294.5983771 0.577 94.49247352 85.04322617

-0.0011 -1510.08 1670400 12177216 104.4864889 282.1135199 0.6292 90.48795371 81.43915834

-0.0012 -1624.32 1484800 8552448 94.98347542 227.960341 0.6768 82.25810265 65.80648212

-0.0013 -1734.72 1299200 5729472 85.97519823 180.5479163 0.7228 74.45670576 52.11969403

-0.0014 -1832.16 1299200 5729472 83.65775001 175.681275 0.7634 72.44973673 50.71481571

-0.0015 -1924.8 1113600 3608064 75.56517263 136.0173107 0.802 65.44135914 39.26481548

-0.0016 -2008.32 1113600 3608064 73.97722346 133.1590022 0.8368 64.06615482 38.43969289

-0.0017 -2083.2 928000 2088000 66.30684706 99.46027059 0.868 57.423414 28.711707

-0.0018 -2152.8 928000 2088000 65.22619108 97.83928663 0.897 56.48753847 28.24376924

-0.0019 -2209.92 742400 1069056 57.58118233 69.0974188 0.9208 49.86676668 19.94670667

-0.002 -2263.2 556800 451008 49.27629185 44.34866267 0.943 42.67452055 12.80235616

-0.0021 -2304.96 556800 451008 48.8278711 43.94508399 0.9604 42.28617679 12.68585304

-0.0022 -2340.48 371200 133632 39.56410897 23.73846538 0.9752 34.26352344 6.852704688

-0.0023 -2368.32 371200 133632 39.33088015 23.59852809 0.9868 34.06154136 6.812308273

-0.0024 -2386.08 185600 16704 27.70743725 8.312231176 0.9942 23.99534453 2.399534453

-0.00249 -2398.608 185600 16704 27.63498414 8.290495243 0.99942 23.9325983 2.39325983



Tangent Modulus Buckling - Numerical 

Inelastic Column Buckling
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ELASTIC BUCKLING OF BEAMS 

 Going back to the original three second-order differential 

equations: 
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ELASTIC BUCKLING OF BEAMS 

 Consider the case of a beam subjected to uniaxial bending only: 

 because most steel structures have beams in uniaxial bending 

 Beams under biaxial bending do not undergo elastic buckling 

 P=0; MTY=MBY=0 

 The three equations simplify to: 

 

 

 

 
 

 Equation (1) is an uncoupled differential equation describing in-

plane bending behavior caused by MTX and MBX 
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2 

3 

(f) 



ELASTIC BUCKLING OF BEAMS 

 Equations (2) and (3) are coupled equations in u and f – that 

describe the lateral bending and torsional behavior of the beam. 

In fact they define the lateral torsional buckling of the beam.  

 The beam must satisfy all three equations (1, 2, and 3). Hence, 

beam in-plane bending will occur UNTIL the lateral torsional 

buckling moment is reached, when it will take over.  

 Consider the case of uniform moment (Mo) causing compression 

in the top flange. This will mean that  

 -MBX = MTX =  Mo 



ELASTIC BUCKLING OF BEAMS 

 For this case, the differential equations (2 and 3) will become: 
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ELASTIC BUCKLING OF BEAMS 

2 2

2 2

2 2

2

2

, 2

sec

o
o x

x A

A
o o

x

A
o x x o

x

x

M
K y x y dA y I

I

y x y dA

K M y
I

y x y dA

K M where y
I

is a new tional property

 



 
      

 

    
   

 
 

  
    







( )

:

(2) 0

(3) ( ) 0

y o

w T o x o

The beam buckling differential equations become

E I u M

E I G K M u M

f

f  f

  

     



ELASTIC BUCKLING OF BEAMS 

2

2

2

2

1 2 2

1 2

(2)

(2) (3) :

( ) 0

sec : 0

0

,

0

o

y

iv o
w T o x

y

x

iv oT

w y w

oT

w y w

iv

M
Equation gives u

E I

Substituting u from Equation in gives

M
E I G K M

E I

For doubly symmetric tion

MG K

E I E I I

MG K
Let and

E I E I I

f

f  f f



f f f

l l

f l f l f

  



   



   

 

     . .becomes the combined d e of LTB



ELASTIC BUCKLING OF BEAMS 

( )

1 1 2 2

4 2

1 2

4 2

1 2

2 2

1 1 2 1 2 12

2 2

1 1 2 1 1 2

1 2

1 2 3 4

0

0

4 4
,

2 2

4 4
,

2 2

, ,

z

z

z z i z i z

Assume solution is of the form e

e

i

Let and i

Above are the four roots for

C e C e C e C e

collect

l

l

a a a a

f

l l l l

l l l l

l l l l l l
l

l l l l l l
l

l a a

l

f  



   

   

   
  

   
   

   

    



1 1 2 1 3 2 4 2cosh( ) sinh( ) sin( ) cos( )

ing real and imaginary terms

G z G z G z G zf a a a a    

    



ELASTIC BUCKLING OF BEAMS 

 Assume simply supported boundary conditions for the beam: 
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